, Volume 16, Issue 3, pp 251-262

Electrophysiology of GABA-mediated synaptic transmission and possible roles in epilepsy

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Epileptogenic conditions come about from a disequilibrium between excitatory and inhibitory mechanisms, creating a state of neuronal hypersynchrony. From experimental studies in animal models of epilepsy it appears that several mechanisms, alone or in combination, could be responsible for this imbalance. An alteration of GABA-mediated inhibition has long been considered to be one of the most likely candidates. We review recent data on the synaptic physiology of GABA-mediated inhibition, with emphasis on GABAA and GABAB receptors and their conductances. We describe the integrative role of GABAergic local-circuit neurons in the normal control of recurrent excitation. We then discuss possible alterations in GABAA-mediated inhibition in two chronic animal models of epilepsy, the kindled rat and the kainate-treated rat. Finally, we review studies on GABA inhibition in human epileptic cortex resected for the treatment of intractable epilepsy.

Special issue dedicated to Dr. Eugene Roberts.