Skip to main content
Log in

General theory of relativity (GTR) in the formalism of a hypercomplex system of numbers

  • Elementary Particle Physics and Field Theory
  • Published:
Soviet Physics Journal Aims and scope

Abstract

The intervals\(d\hat S = \hat \gamma _\mu (x){\mathbf{ }}dx^\mu ,{\mathbf{ }}d\hat S^2 = \hat g_{\mu \nu } {\mathbf{ }}(x){\mathbf{ }}dx^\mu {\mathbf{ }}d^\nu \) are hypercomplex numbers. In curved space, one can decompose them according to the 16-element Dirac algebra {Γα}, α=0, 1, 2, ..., 15, into the form\(\hat \gamma _\mu = Z_\mu ^\alpha (x){\mathbf{ }}\Gamma _\alpha ,{\mathbf{ }}\hat g_{\mu \nu } = {\mathbf{ }}h_{\mu \nu }^\alpha (x){\mathbf{ }}\Gamma _\alpha \) Then, the gravitational field is described by the components h μνa . In the decomposition one can limit oneself to a quaternion, biquaternion, or consider the complete algebra. Using the projection operators, one can switch to a spin-tensor description of gravitation\(\hat g_{\mu \nu } = h_{\mu \nu }^\alpha {\mathbf{ }}\Gamma _\alpha {\mathbf{ }}D_4^\varepsilon {\mathbf{ }}D_{13}^s = {\mathbf{ }}(\varphi _{\mu \nu }^0 {\rm I} + \varphi _{\mu \nu }^1 {\mathbf{ }}\mathop \gamma \limits^0 _1 + \varphi _{\mu \nu }^2 {\mathbf{ }}\mathop \gamma \limits^0 _2 + \varphi _{\mu \nu }^3 {\mathbf{ }}\mathop \gamma \limits^0 _1 \mathop \gamma \limits^0 _2 ){\mathbf{ }}D_4^\varepsilon D_{13}^s \). In the hypercomplex discussion, the Einstein equations are transformed to the system\(R_{\mu \nu }^\alpha - \frac{1}{2}{\mathbf{ }}R^\beta h_{\mu \nu }^\gamma {\mathbf{ }}\varepsilon _{\beta \gamma }^\alpha = \chi {\rm T}_{\mu \nu }^\alpha \). As an example, the external Schwarzchild problem is solved in quaternions:\(d\hat S^2 = \Phi 0I + \Phi ^1 \mathop {\gamma _1 }\limits^0 + \Phi ^2 \mathop {\gamma _2 + }\limits^0 \Phi ^3 \mathop {\gamma _1 }\limits^0 \mathop {\gamma _2 }\limits^0 \). From the definition of the 4-velocity\(\hat U_\mu = dx^\mu /d\hat S\) follows\(\hat U_\mu = \hat \gamma _\mu \), and the equation of a geodesic is converted into a condition of the covariant constancy of\(\hat \gamma _\mu \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. D. F. Kurdgelaidze, Thesis, 11th Int. Gravitation Conference, Stockholm (1986).

  2. V. I. Rodichev, The Theory of Gravitation in an Orothogonal Frame [in Russian], Nauka, Moscow (1974).

    Google Scholar 

  3. D. F. Kurdgelaidze, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 11, 22 (1986); No. 12, 58 (1986).

    Google Scholar 

  4. R. Tolman, Relativity, Thermodynamics, and Cosmology, Clarendon Press, Oxford (1962).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 5, pp. 18–23, May, 1990.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurdgelaidze, D.F. General theory of relativity (GTR) in the formalism of a hypercomplex system of numbers. Soviet Physics Journal 33, 391–396 (1990). https://doi.org/10.1007/BF00896074

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00896074

Keywords

Navigation