Skip to main content
Log in

Effects of temperature and sliding rate on frictional strength of granite

  • Published:
pure and applied geophysics Aims and scope Submit manuscript

Abstract

Layers of artificial granite gouge have been deformed on saw-cut granite surfaces inclined 30° to the sample axes. Samples were deformed at a constant confining pressure of 250 MPa and temperatures of 22 to 845°C. The velocity dependence of the steady-state coefficient of friction (μss) was determined by comparing sliding strengths at different sliding rates. The results of these measurements are consistent with those reported bySolberg andByerlee (1984) at room temperature andStesky (1975) between 300 and 400°C. Stesky found that the slip-rate dependence of (μss) increased above 400°C. In the present study, however, the velocity dependence of (μss) was nearly independent of temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bowden, F. P. andTabor, D. (1964),The Friction and Lubrication of Solids, Part II. Oxford University Press, London.

    Google Scholar 

  • Byerlee, J. D. (1967),Frictional characteristics of granite under high confining pressures. J. Geophys. Res.72, 3639–3648.

    Google Scholar 

  • Byerlee, J. D. (1968),Brittle-ductile transition in rocks. J. Geophys. Res.73, 4741–4750.

    Google Scholar 

  • Byerlee, J. D. (1978),Friction of rocks. Pure Appl. Geophys.116, 615–626.

    Google Scholar 

  • Byerlee, J. D. andVaughan, P. (1984),Dependence of friction on slip velocity in water saturated granite with added gouge. Trans. Amer. Geophys. Union, EOS65, 1078.

    Google Scholar 

  • Dieterich, J. H. (1978),Time-dependent friction and the mechanics of stick-slip. Pure Appl. Geophys.116, 790–806.

    Google Scholar 

  • Dieterich, J. H. (1979),Modeling of rock friction: 1. Experimental results and constitutive equations. J. Geophys. Res.84, 2161–2168.

    Google Scholar 

  • Dieterich, J. H. (1980), ‘Experimental and model study of fault constitutive properties’, inSolid Earth Geophysics and Geotechnology, 42 (ed. S. Nemet-Nasser), American Society of Mechanical Engineers, New York, pp. 21–29.

    Google Scholar 

  • Dieterich, J. H. (1981), ‘Constitutive properties of faults with simulated gouge’, inMechanical Behavior of Crustal Rocks, The Handin Volume (ed. N. L. Carter, M. Friedman, J. M. Logan, and D. W. Sterns), Geophysical Monograph Series, No. 24, AGU, pp. 103–120.

  • Dieterich, J. H. andConrad, G. (1984),Effect of humidity of time- and velocity-dependent friction in rocks. J. Geophys. Res.89, 4196–4202.

    Google Scholar 

  • Gu, J.-C., Rice, J. R., Ruina, A. L. andTse, S. T. (1984),Slip motion and stability of a single degree of freedom elastic system with rate and state dependent friction. J. Mech. Phys. Solids32, 167–196.

    Google Scholar 

  • Healy, K. A. (1959),The dependence of dilation in sand on rate of shear strain. Ph.D. Thesis, Massachusetts Inst. Technology.

  • Hungr, O. andMorgenstern, N. R. (1984),High velocity ring shear tests on sand. Geotechnique34, 415–421.

    Google Scholar 

  • Lockner, D. A. andByerlee, J. D. (1985),A case for displacement-dependent instabilities in rock (Abstract). Trans. Amer. Geophys. Union, EOS66, 1100.

    Google Scholar 

  • Lockner, D. A. andByerlee, J. D. (1986),Laboratory measurements of velocity dependent frictional strength. Open File Rept. 86-417, U.S. Geol. Surv., 68p.

  • Mandl, G., De Jong, L. N. J., andMaltha, A. (1977),Shear zones in granular materials. Rock Mech.9, 95–144.

    Google Scholar 

  • Morgenstern, N. R. andTchalenko, J. S. (1967),Microscopic structures in kaolin subjected to direct shear. Geotech.17, 309–328.

    Google Scholar 

  • Morrow, C. andByerlee, J. D. (1985),A physical explanation for transient stress behavior during shearing of fault gouge at variable strain rates (Abstract). Trans. Amer. Geophys. Union, EOS66, 1100.

    Google Scholar 

  • Okubo, P. G. andDieterich, J. H. (1986),State variable fault constitutive relations for dynamic slip, submitted to 5th Ewing Symposium, Earthquake Source Mechanisms, AGU Monograph.

  • Rice, J. R. (1983),Constitutive relations for fault slip and earthquake instabilities. Pure Appl. Geophys.121, 443–475.

    Google Scholar 

  • Rice, J. R. andGu, J.-C. (1983),Earthquake aftereffects and triggered seismic phenomena. Pure Appl. Geophys.121, 187–219.

    Google Scholar 

  • Rice, J. R. andRuina, A. L. (1983),Stability of steady frictional slipping. Trans. ASME, J. Appl. Mech.50, 343–349.

    Google Scholar 

  • Ruina, A. L. (1980),Friction laws and instabilities: A quasistatic analysis of some dry frictional behavior. Ph.D. Thesis, Brown University.

  • Ruina, A. L. Slip instability and state variable friction laws. J. Geophys. Res.88, 10359–10370.

  • Schneider, H. (1977),The time-dependence of friction of rock joints. Bull. Int. Assoc. Engin. Geol., No. 16, 235–239.

    Google Scholar 

  • Scholz, C. H. andEngelder, J. T. (1976),The role of asperity indentations and ploughing in rock friction: I. Asperity creep and stick slip. Int. J. Rock Mech. Min. Sci. Geomech. Abstr.13, 149–154.

    Google Scholar 

  • Shimamoto, T. (1985),Confining pressure reduction experiments: A new method for measuring frictional strength over a wide range of normal stress. Int. J. Rock Mech. Min. Sci. Geomech. Abstr.22, 227–236.

    Google Scholar 

  • Shimamoto, T. (1986),Transition between frictional slip and ductile flow for halite shear zones at room temperature. Science231, 711–714.

    Google Scholar 

  • Shimamoto, T. andLogan, J. M. (1986),Velocity-dependent behaviors of simulated halite shear zones: An analog for silicates, submitted to 5th Maurice Ewing Symposium, Earthquake Source Mechanics, AGU Monograph.

  • Skempton, A. W. (1985),Residual strength of clays in landslides, folded strata and the laboratory. Geotechnique35, 3–18.

    Google Scholar 

  • Solberg, P. andByerlee, J. D. (1984),A note on the rate sensitivity of frictional sliding of Westerly granite. J. Geophys. Res.89, 4203–4205.

    Google Scholar 

  • Stesky, R. M. (1975),The mechanical behavior of faulted rock at high temperature and pressure. Ph.D. Thesis, Massachusetts Inst. Technology.

  • Stesky, R. M. (1978),Mechanisms of high-temperature frictional sliding in Westerly granite. Can. J. Earth Sci.15, 361–375.

    Google Scholar 

  • Summers, R., Lockner, D. A. andByerlee, J. D. (1985),Temperature and velocity dependence of friction in granite (Abstract), Trans Amer. Geophys. Union, EO566, 1100.

    Google Scholar 

  • Tchalenko, J. S. (1970),Similarities between shear zones of different magnitudes. Geol. Soc. Amer. Bull.81, 1625–1640.

    Google Scholar 

  • Teufel, L. W. (1981),Frictional properties of jointed welded tuff. Sandia National Laboratories, SAND 81-0212.

  • Teufel, L. W. andLogan, J. M. (1978),Effect of displacement rate on the area of contact and temperatures generated during frictional sliding of Tennessee sandstone. Pure Appl. Geophys.116, 840–865.

    Google Scholar 

  • Tse, S. T. andRice, J. R. (1986),Crystal earthquake instability in relation to the depth variation of frictional slip properties. J. Geophys. Res.91, 9452–9472.

    Google Scholar 

  • Tullis, T. E. andWeeks, J. D. (1986),Constitutive behavior and stability of frictional sliding of granite. Pure Appl. Geophys.124 No. 3, 383.

    Google Scholar 

  • Weeks, J. andTullis, T. (1984),Frictional behavior of dolomite. Trans. Amer. Geophys. Union, EOS65, 1077.

    Google Scholar 

  • Weeks, J. andTullis, T. (1985),Frictional behavior of dolomite: A variation in constitutive behavior. J. Geophys. Res.90, 7821–7826.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lockner, D.A., Summers, R. & Byerlee, J.D. Effects of temperature and sliding rate on frictional strength of granite. PAGEOPH 124, 445–469 (1986). https://doi.org/10.1007/BF00877211

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00877211

Key words

Navigation