Skip to main content
Log in

Dilatancy and fracture induced velocity changes in rock and their relation to frictional sliding

  • Published:
pure and applied geophysics Aims and scope Submit manuscript

Summary

Laboratory room temperature triaxial friction tests on sawcut granite and serpentinite specimens suggest that stick-slip at high confining pressures is preceded by dilatancy in the intact rock adjacent to the shear surface. By using a fast-reacting servo-loading system in combination with a high resolution digital computer recording system it is possible to obtain a more realistic picture of the stick-slip mechanisms and the stress drop associated with unstable slip. Fracturing in granite under biaxial loading leads to a significant anisotropy in dilation andP-wave velocity of the rock. Velocity decreases remarkably in the directions of minor principal stresses with no indication for velocity recovery before macroscopic shear fracture development.

The results suggest that dilatancy and velocity anomalies may precede crustal earthquakes under certain tectonic conditions.

Zusammenfassung

Triaxiale Scherversuche an polierten Scherflächen in Granit- und Serpentinitproben (Normaltemperatur) lassen schließen, daß instabile Gleitvorgänge auf den Scherflächen bei sehr hohen Manteldrücken mit vorhergehenden Auflockerungen (Dialatanz) des intakten Gesteins in der Umgebung der Scherfläche verbunden sind. Durch die Verwendung eines reaktions-schnellen Servobelastungssystems in Verbindung mit einem hoch-auflösenden digitalen Aufzeichnungssystem konnte erstmals ein Einblick in den tatsächlichen Ablauf des instabilen Gleitprozesses gewonnen werden. Der Bruch in Granit bei biaxialer Belastung führt zu einer signifikanten Anisotropie der Auflockerung des Gesteinsgefüges und damit der Geschwindigkeit seismischer Wellen. Die Geschwindigkeit derP-Wellen nimmt in Richtung der beiden kleineren Hauptspannungen mit fortschreitender Deformation kontinuferlich ohne Anzeichen eines Geschwindigkeitsanstiegs vor der Entwicklung des makroskopischen Scherbruchs ab.

Die Ergebnisse lassen den Schluß zu, daß Dilatanz und damit verbundene Geschwindigkeitsanomalien Erdbeben in der Kruste bei bestimmten tektonischen Bedingungen vorangehen können.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Nur, A. (1972),Ditatancy, pore fluids and premonitory variations of t s/tp travel times. Bull. Seis. Soc. of America62, 1217–1222.

    Google Scholar 

  2. Aggerval, Y. P., Syks, L. R., Armbruster, J. andSbar, M. L. (1973),Premonitory Changes in Seismic velocities and prediction of earthquakes. Nature241, 101–104.

    Google Scholar 

  3. Anderson, D. L. andWhitcomb, J. H.,The dilatancy-diffusion model of earthquake prediction in Proc. Conf. Tectonic Problems of San Andreas Fault System, ed. by Kovach and Nur, Stanf. Univ. Press, 1973, 417–426.

  4. Rummel, F.,Changes in the P-wave velocity with increasing inelastic deformation in rock specimens under compression, Advances in Rock Mechanics, National Academy of Sciences, Washington, 1974, 517–523.

    Google Scholar 

  5. Hadley, K. (1975),V p/Vs anomalies in dilatant rock samples, Pageoph113, 1–23.

    Google Scholar 

  6. Bonner, B. P. (1975),V p/Vs in saturated granodiorite loaded to failure, Pageoph113, 25–29.

    Google Scholar 

  7. Lockner, D., andByerlee, J. (1977),Acoustic emission and fault formation in rocks. Proc. 1st. Conf. A.E., Microseismic Activity in Geol. Structures and Mat., ed. H. R. Hardy and F. W. Leighton, Ser. Rock and Soil Mech.2, 1974–77, Trans Tech. Publ.3, 99–107.

  8. Rothman, R. L. (1977),Acoustic emissions in rocks stressed to failure. Proc. 1st. Conf. A. E., Microseism. Act. in Geol. Structures and Mat., ed. H. R. Hardy and F. W. Leighton, Ser. Rock and Soil Mech.,2, 1974–77, Trans Tech. Publ.3, 109–133.

  9. Crouch, S. L. (1970),Experimental determination of volumetric strains in failed rock. Int. J. Rock Mech. Min. Sci.7, 589–603.

    Google Scholar 

  10. Friedman, M. (1974),Mechanical properties of rocks affecting earthquake prediction and control. Semi-annual progr. rep. Center for Tectonophys. Texas A and M Univ., College Station, 1974.

    Google Scholar 

  11. Brace, W. F. andByerlee, J. D. (1970),California earthquakes: Why only shallow focus? Science168, S.1573–1575.

    Google Scholar 

  12. Brace, W. F. (1972),Laboratory studies of stick-slip and their application to earthquakes, Tectonophysics14 3/4, 189–200.

    Google Scholar 

  13. Byerlee, J. D. (1970),The mechanics of stick-slip, Tectonophysics9, 457–486.

    Google Scholar 

  14. Sobolev, G. A. (1975),The Study of precursors of failure under biaxial compression, Pageoph113, 45–49.

    Google Scholar 

  15. Rummel, F. (1975),Experimentelle Untersuchungen zum Bruchvorgang in Gesteinen, Ber. Inst. f. Geophysik Ruhr-Universität Bochum,4.

  16. Stesky, R. M., Brace, W. F., Rilfy, D. R. andRobin, P. Y. F. (1974),Friction in faulted rock at high temperature and pressure, Tectonophysics23, 177–203.

    Google Scholar 

  17. Engelder, J. T., Logan, J. M. andHandin, J. (1975),The sliding characteristics of sandstone on quartz fault-gouge, Pageoph113, 69–86.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rummel, F., Alheid, H.J. & Frohn, C. Dilatancy and fracture induced velocity changes in rock and their relation to frictional sliding. PAGEOPH 116, 743–764 (1978). https://doi.org/10.1007/BF00876536

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00876536

Key words

Navigation