Skip to main content
Log in

Metabolism in hyperthermophilic microorganisms

  • Research Articles
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Hyperthermophilic microorganisms grow at temperatures of 90 °C and above and are a recent discovery in the microbial world. They are considered to be the most ancient of all extant life forms, and have been isolated mainly from near shallow and deep sea hydrothermal vents. All but two of the nearly twenty known genera are classified asArchaea (formerly archaebacteria). Virtually all of them are strict anaerobes. The majority are obligate heterotrophs that utilize proteinaceous materials as carbon and energy sources, although a few species are also saccharolytic. Most also depend on the reduction of elemental sulfur to hydrogen sulfide (H2S) for significant growth. Peptide fermentation involves transaminases and glutamate dehydrogenase, together with several unusual ferredoxin-linked oxidoreductases not found in mesophilic organisms. Similarly, a novel pathway based on a partially non-phosphorylated Entner-Doudoroff scheme has been postulated to convert carbohydrates to acetate, H2 and CO2, although a more conventional Embden-Meyerhof pathway has also been identified in one saccharolytic species. The few hyperthermophiles known that can assimilate CO2 do so via a reductive citric acid cycle. Two So-reducing enzymes termed sulfhydrogenase and sulfide dehydrogenase have been purified from the cytoplasm of a hyperthermophile that is able to grow either with or without So. A scheme for electron flow during the oxidation of carbohydrates and peptides and the reduction of So has been proposed. However, the mechanisms by which So reduction is coupled to energy conservation in this organism and in obligate So-reducing hyperthermophiles is not known.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ADH:

alcohol dehydrogenase (ADH)

AOR:

aldehyde ferredoxin oxidoreductase

FMOR:

formate ferredoxin oxidoreductase

FOR:

formaldehyde ferredoxin oxidoreductase

GAPDH:

glyceraldehyde-3-phosphate dehydrogenase

GDH:

glutamate dehydrogenase

GluOR:

glucose ferredoxin oxidoreductase

KGOR:

2-ketoglutarate ferredoxin oxidoreductase

IOR:

indolepyruvate ferredoxin oxidoreductase

LDH:

lactate dehydrogenase

MPT:

molybopterin

POR:

pyruvate ferredoxin oxidoreductase

PLP:

pyridoxal-phosphate

PS:

polysulfide

TPP:

thiamin pyrophosphate

So :

elemental sulfur

VOR:

isovalerate ferredoxin oxidoreductase

References

  • Adams MWW & Kelly RM, eds. (1992) Biocatalysis at Extreme Temperatures: Enzyme Systems Near and Above 100 °C, Washington, D.C, American Chemical Society, 215 pp., Series No. 498

  • Adams MWW (1990) The metabolism of hydrogen by extremely thermophilic, sulfur-dependent bacteria. FEMS Microbiol. Rev. 75: 219–238

    Google Scholar 

  • Adams MWW (1992) Novel iron sulfur clusters in metalloenzymes and redox proteins from extremely thermophilic bacteria Advs. Inorg. Chem. 38: 341–396

    Google Scholar 

  • Adams MWW (1993) Enzymes and proteins from organisms that grow near and above 100 °C. Ann. Rev. Microbiol. 47: 627–658

    Google Scholar 

  • Adams MWW (1994a) Biochemical diversity among sulfur-dependent hyperthermophilic microorganisms. FEMS Microbiol. Rev. (in press)

  • Adams, MWW (1994b) “Tungsten proteins”. In:Encyclopedia of Inorganic Chemistry (King, RB, Ed), John Wiley, pp. 4284–4291 New York

    Google Scholar 

  • Altekar W & Rangaswamy V (1992) Degradation of endogenous fructose during catabolism of sucrose and mannitol in halophilic archaebacteria. Arch. Microbiol. 158: 356–363

    Google Scholar 

  • Andreotti G, Cubellis MV, Nitti G, Sannia G, Mai X, Adams MWW & Marino G (1994a) An extremely thermostable aromatic aminotransferase from the hyperthermophilic archaeonPyrococcus furiosus. Biochim. Biophys. Acta (submitted for publication)

  • Andreotti G, Cubellis MV, Nitti G, Sannia G, Mai X, Marino G & Adams MWW (1994b) Characterization of aromatic amino-transferases in the hyperthermophilic archaeonThermococcus litoralis. Eur. J. Biochem. 220:543–549

    Google Scholar 

  • Aono S, Bryant FO & Adams MWW (1989) A novel and remarkably thermostable ferredoxin from the hyperthermophilic archaebacteriumPyrococcus furiosus. J. Bacteriol. 171: 3433–3439

    Google Scholar 

  • Badr HR, Sims KA & Adams MWW (1994) Purification and characterization of sucrose α-glucohydrolase (invertase) from the hyperthermophilic archaeon,Pyrococcus furiosus Syst. Appl. Microbiol. 17: 1–6

    Google Scholar 

  • Barker HA (1981) Amino acid degradation by anaerobic bacteria. Ann. Rev. Biochem. 50: 23–40

    Google Scholar 

  • Baross JA, Deming JW (1994) Growth at high temperatures: isolation and taxonomy, physiology and ecology. In: Karl DM (ED), Microbiology of Deep Sea Hydrothermal Vent Environments Caldwell, Vol 1. Telford, NJ (in press)

  • Bazylinski DA, Wirsen CO & Jannasch HW (1988) Hydrocarbons in surface sediments from a Guaymas Basin hydrothermal vent site. Org. Geochem. 12: 547–558

    Google Scholar 

  • Beh M, Strauss G, Huber R, Stetter KO & Fuchs G (1993) Enzymes of the reductive citric acid cycle in the autotrophic eubacteriumAquifex pyrophilus and in the archaebacteriumThermoproteus neutrophilus. Arch. Microbiol. 160: 306–311

    Google Scholar 

  • Blake PR, Park J.-B, Bryant FO, Aono S, Magnuson JK, Eccleston E, Howard JB, Summers MF & Adams MWW (1991) Determinants of protein hyperthermostability. 1. Purification, amino acid sequence, and secondary structure from NMR of the rubredoxin from the hyperthermophilic archaebacterium,Pyrococcus furiosus. Biochemistry 30: 10885–10891

    Google Scholar 

  • Blamey JM & Adams MWW (1993) Purification and characterization of pyruvate ferredoxin oxidoreductase from the hyperthermophilic archaeonPyrococcus furiosus. Biochim. Biophys. Acta 1161: 19–27

    Google Scholar 

  • Blamey JM & Adams MWW (1994a) Characterization of an ancestral-type of pyruvate ferredoxin oxidoreductase from the hyperthermophilic bacterium,Thermotoga maritima. Biochemistry 33: 1000–1007

    Google Scholar 

  • Blamey JM, Mukund S & Adams, MWW (1994b) A highly thermostable ferredoxin from the hyperthermophilic bacteriumThermotoga maritima. FEMS Microbiol. Lett. 121:165–170

    Google Scholar 

  • Blaut M (1994) Metabolism in methanogens. Antonie van Leeuwenhoek (this volume)

  • Blöchl E, Keller M, Wächtersäuser G and Stetter KO (1992) Reactions depending on iron sulfide and linking geochemistry and biochemistry. Proc. Natl. Acad. Sci. USA 89: 8117–8120

    Google Scholar 

  • Blumentals II, Itoh M, Olson GJ & Kelly RM (1990) Role of polysulfides in reduction of elemental sulfur by the hyperthermophilic archaebacteriumPyrococcus furiosus. Appl. Environ. Microbiol. 56: 1255–1262

    Google Scholar 

  • Blumentals II, Robinson AS & Kelly RM (1990) Characterization of sodium dodecyl sulfate-resistant proteolytic activity in the hyperthermophilic archaebacteriumPyrococcus furiosus. Appl. Environ. Microbiol. 56: 1992–1998

    Google Scholar 

  • Bonch-Osmolovskaya EA, Miroschnichenko ML, Kostrikina NA, Chernych NA & Zavarzin GA (1990)Thermoproteus uzoniensis sp. nov., a new extremely thermophilic archaebacterium from Kamchatka continental hot springs. Arch. Microbiol. 154: 556–559

    Google Scholar 

  • Bonch-Osmolovskaya EA, Slesarev AI, Miroshnichenko ML, Svetlichnaya TP & Alekseev VA (1988) Characteristics ofDesulfurococcus amylolyticus — a new extremely thermophilic archaebacterium isolated from thermal springs of Kamchatka and Kunashir island. Mikrobiologiya 57: 78–85

    Google Scholar 

  • Bragger JM, Daniel RM, Coolbear T & Morgan HW (1989) Very stable enzymes from thermophilic archaebacteria and eubacteria. Appl. Microbiol. Biotechnol. 31: 556–561

    Google Scholar 

  • Brock TD (1986) Introduction: an overview of the thermophiles. In: Brock TD (Ed) The Thermophiles: General, Molecular and Applied Microbiology (pp. 1–16). John Wiley, New York

    Google Scholar 

  • Brown SH & Kelly RM (1993) Characterization of amylolytic enzymes, having both α-1,4 and α-1,6 hydrolytic activity, from the thermophilic archaeaPyrococcus furiosus andThermococcus litoralis. Appl. Environ. Microbiol. 59: 2614–2621

    Google Scholar 

  • Brown SH, Costantino HR & Kelly RM (1990) Characterization of amylolytic enzyme activities associated with the hyperthermophilic archaebacteriumPyrococcus furiosus. Appl. Environ. Microbiol. 56: 1985–1991

    Google Scholar 

  • Brown SH, Sjoholm C & Kelly RM (1993) Purification and characterization of a highly thermostable glucose isomerase produced by the extremely thermophilic eubacteriumThermotoga maritima. Biotech. Bioeng. 41: 878–886

    Google Scholar 

  • Bryant FO & Adams MWW (1989) Characterization of hydrogenase from the hyperthermophilic archaebacterium,Pyrococcus furiosus. J. Biol. Chem. 264: 5070–5079

    Google Scholar 

  • Budgen N & Danson MJ (1986) Metaolism of glucose via a modified Entner-Doudoroff pathway in the thermoacidophilic archaebacteriumThermoplasma acidophilum. FEBS Lett. 196: 207–210

    Google Scholar 

  • Burggraf S, Fricke H, Neuner A, Kristjansson JK, Rouvier P, Mandelco L, Woese CR & Stetter KO (1990)Mechanococcus igneus sp. nov., a novel hyperthermophilic methanogen from a shallow submarine hydrothermal system. Syst. Appl. Microbiol. 13: 263–269

    Google Scholar 

  • Burggraf S, Olsen GJ, Stetter KO & Woese CR (1992) A phylogenetic analysis ofAquifex pyrophilus. Arch. Microbiol. 15: 352–356

    Google Scholar 

  • Busse SA, La Mar GN, Yu LP, Howard JB, Smith ET, Zhou ZH & Adams MWW (1992) Proton NMR investigation of the oxidized three-iron clusters in the ferredoxins from the hyperthermophilic archaea,Pyrococcus furiosus andThermococcus litoralis. Biochemistry 31: 11952–11962

    Google Scholar 

  • Childers SE, Vargas M & Noll KM (1992) Improved methods for cultivation of the extremely thermophilic bacteriumThermotoga neapolitana. Appl. Environ. Microbiol. 58: 3949–3953

    Google Scholar 

  • Connaris H, Cowan DA & Sharp RJ (1991) Heterogeneity of proteinases from the hyperthermophilic archaeobacteriumPyrococcus furiosus. J. Gen. Microbiol. 137: 1193–1199

    Google Scholar 

  • Conover RC, Kowal AT, Fu W, Park J-B, Aono S, Adams MWW & Johnson MK (1990a) Spectroscopic characterization of the novel iron-sulfur cluster inPyrococcus furiosus ferredoxin. J. Biol. Chem. 265: 8533–8541

    Google Scholar 

  • Conover RC, Park J-B, Adams MWW & Johnson MK (1990b) The formation and properties of a NiFe3S4 cluster inPyrococcus furiosus ferredoxin. J. Am. Chem. Soc. 112: 4562–4564

    Google Scholar 

  • Conover RC, Park J-B, Adams MWW & Johnson MK (1991) Exogenous ligand binding to the [Fe4S4] cluster inPyrococcus furiosus ferredoxin. J. Am. Chem. Soc. 113: 2799–2800

    Google Scholar 

  • Consalvi V, Chiaraluce R, Politi L, Vaccaro R, De Rosa M & Scandurra R (1991) Extremely thermostable glutamate dehydrogenase from the hyperthermophilic archaebacteriumPyrococcus furiosus. Eur. J. Biochem. 202: 1189–1196

    Google Scholar 

  • Constantino HR, Brown SH & Kelly RM (1990) Purification and characterization of an α-glucosidase from a hyperthermophilic archaebacterium,Pyrococcus furiosus, exhibiting a temperature optimum of 105 to 115 °C. J. Bacteriol. 172: 3654–3660

    Google Scholar 

  • Conway T (1992) The Entner-Doudoroff pathway: history, physiology and molecular biology. FEMS Microbiol. Rev. 103: 1–28

    Google Scholar 

  • Cowan DA, Smolenski KA, Daniel RM & Morgan HW (1987) An extremely thermostable extracellular proteinase from a strain of the archaebacteriumDesulfurococcus growing at 88 °C. Biochem. J. 247: 121–133

    Google Scholar 

  • Danson MJ & Hough DW (1992) The enzymology of archaebacterial pathways of central metabolism. In: Danson MJ, Hough DW & Lunt GG (Eds) The Archaebacteria: Biochemistry and Biotechnology (pp. 1–21). Portland Press, London

    Google Scholar 

  • Danson MJ (1989) Central metabolism of the archaebacteria: an overview. Can. J. Microbiol. 35: 58–64

    Google Scholar 

  • DeLong EF (1992) Archaea in coastal marine environments. Proc. Natl. Acad. Sci. USA 89: 5685–5689

    Google Scholar 

  • DiRuggiero J, Klump H, Kessel M, Park J-B, Adams MWW & Robb FT (1992) Glutamate dehydrogenase from the hyperthermophilePyrococcusfuriosus; thermal denaturation and activation. J. Biol. Chem. 267: 22681–22685

    Google Scholar 

  • DiRuggiero J, Robb FT, Jagus R, Klump HK, Borges KM, Mai X, Kessel M & Adams MWW (1993) Characterization, cloning, and in vitro expression of an extremely thermostable glutamate dehydrogenase from the hyperthermophilic archaeon ES4. J. Biol. Chem. 268: 17767–17774

    Google Scholar 

  • Eggen R, Geerling A, Watts J & de Vos WM (1990) Characterization of pyrolysin, a hyperthermoactive serine protease from the archaebacteriumPyrococcus furiosus. FEMS Microbiol. Lett. 71: 17–20

    Google Scholar 

  • Eggen RIL, Geerling ACM, Waldkotter K, Antranikian G & Devos WM (1993) The glutamate dehydrogenase-encoding gene of the hyperthermophilic archaeonPyrococcus furiosus — sequence, transcription and analysis of the deduced amino acid sequence. Gene 132: 143–148

    Google Scholar 

  • Erauso G, Charbonnier F, Barbeyron T, Forterre P & Prieur D (1992) Preliminary characterization of a hyperthermophilic archaebacterium with a plasmid, isolated from a North Fiji basin hydrothermal vent. C. R. Acad. Sci. Paris 314: 387–393

    Google Scholar 

  • Erauso G, Reysenbach A.-L, Godfroy A, Meunier J.-R, Crump B, Partensky F, Baross JA, Marteinsson V., Barbier G, Pace NR & Prieur, D (1993)Pyrococcus abyssi sp. nov., a new hyperthermophilic archaeon isolated from a deep sea hydrothermal vent. Arch. Microbiol. 160, 338–349

    Google Scholar 

  • Ferry JG (1990) Formate dehydrogenase. FEMS Microbiol. Rev. 87: 377–382

    Google Scholar 

  • Fiala G, Stetter KO, Jannasch H.W, Langworthy TA & Madon J (1986)Staphylothermus marinus sp. nov. represents a novel genus of extremely thermophilic submarine heterotrophic archaebacteria growing up to 98 °C. Syst. Appl. Microbiol. 8: 106–113

    Google Scholar 

  • Fiala G & Stetter KO (1986)Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100 °C. Arch. Microbiol. 145: 56–61

    Google Scholar 

  • Fuchs G & Stupperich E (1986) Carbon assimilation pathways in archaebacteria. Syst. Appl. Microbiol. 7: 364–369

    Google Scholar 

  • Fuhrman JA, McCallum K and Davis AA (1992) Novel major archaebacterial group from marine plankton. Nature 356: 148–149

    Google Scholar 

  • Gabelsberger J, Liebl W & Schleifer KH (1993) Cloning and characterization of β-galactosidase and β- glucoside hydrolysing enzymes ofThermotoga maritima. FEMS Microbiol. Lett. 109: 131–138

    Google Scholar 

  • George G, Prince RC, Mukund S & Adams MWW (1992) Aldehyde ferredoxin oxidoreductase from the hyperthermophilic archaebacteriumPyrococcus furiosus contains a tungsten oxo-thiolate center. J. Amer. Chem. Soc. 114: 3521–3523

    Google Scholar 

  • Gottschalk G, ed. (1986) Bacterial Metabolism, 2nd. edn., 359 pp., Springer Verlag, New York

    Google Scholar 

  • Hansen TA (1994) Sulfate-reducing bacteria. Antonie van Leeuwenhoek (this volume)

  • Heider J & Adams MWW (1994) Purification and characterization of a novel formate dehydrogenase from the hyperthermophilic archaeal strain ES-1. Abst. 93rd Ann. Meet. Am. Soc. Microbiol., K-45, Am. Soc. Microbiol., Washington, D.C.

    Google Scholar 

  • Hensel R, Laumann S, Lang J, Heumann H & Lottspeich F (1987) Characterization of two glyceraldehyde-3-phosphate dehydrogenases from the extremely thermophilic archaebacteriumThermoproteus tenax. Eur. J. Biochem. 170: 325–333

    Google Scholar 

  • Hoaki T, Wirsen CO, Hanzawa S, Maruyama T & Jannasch HW (1993) Amino acid requirements of two hyperthermophilic archaeal isolates from deep-sea vents,Desulfurococcus strain SY andPyrococcus strain GB-D. Appl. Environ. Microbiol. 59: 610–613

    Google Scholar 

  • Huber G, Huber R, Jones BE, Lauerer G, Neuner A, Segerer A, Stetter KO & Degens ET (1991) Hyperthermophilic archaea and bacteria occurring within Indonesian hydrothermal areas. Syst. Appl. Microbiol. 14: 397–404

    Google Scholar 

  • Huber R & Stetter KO (1991) TheThermotogales: hyperthermophilic and extremely thermophilic bacteria. In: Kristjansson JK (Ed) Thermophilic Bacteria (pp. 185–194). CRC Press, Boca Raton, FL

    Google Scholar 

  • Huber R, Drobner E, Huber H & Stetter KO (1992b) Growth by aerobic oxidation of molecular hydrogen inArchaea — a metabolic property so far unknown for this domain. Syst. Appl. Microbiol. 15: 502–504

    Google Scholar 

  • Huber R, Kristjansson JK & Stetter KO (1987)Pyrobaculum gen. nov., a new genus of neutrophilic, rod-shaped archaebacteria from continental solfataras growing optimally at 100 °C. Arch. Microbiol. 149: 95–101

    Google Scholar 

  • Huber R, Langworthy TA, König H, Thomm M, Woese CR, Sleytr UB and Stetter KO (1986)Thermotoga maritima sp. nov. represent a new genus of unique extremely thermophilic eubacteria growing up to 90 °C. Arch. Microbiol. 144: 324–333

    Google Scholar 

  • Huber R, Stoffers P, Cheminee JL, Richnow HH & Stetter KO (1990) Hyperthermophilic archaebacteria occurring within the crater and open sea plume of erupting Macdonald seamount. Nature 345: 179–181

    Google Scholar 

  • Huber R, Wilharm T, Huber D, Trincone A, Burggraf S, König H, Rachel R, Rockinger I, Fricke H and Stetter KO (1992a)Aquifex pyrophilus gen. nov. sp. nov., represents a novel group of marine hyperthermophilic hydrogen oxidizing bacteria. Arch. Microbiol. 15: 340–351

    Google Scholar 

  • Jannasch HW & Mottl MJ (1985) Geomicrobiology of deep-sea hydrothermal vents. Science 229: 7177–7125

    Google Scholar 

  • Jannasch HW, Huber R, Belkin S & Stetter KO (1988a)Thermotoga neapolitana sp. nov. of the extremely thermophilic, eubacterial genusThermotoga. Arch. Microbiol. 150: 103–104

    Google Scholar 

  • Jannasch HW, Wirsen CO, Molyneaux SJ & Langworthy TA (1988b) Extremely thermophilic fermentative archaebacteia of the genusDesulfurococcus from deep-sea hydrothermal vents. Appl. Environ. Microbiol. 54: 1203–1209

    Google Scholar 

  • Jannasch HW, Wirsen, CO, Molyneaux, SJ, & Langworthy TA (1992) Comparative physiological studies on hyperthermophilic archaea isolated from deep sea hot vents with emphasis onPyrococcus strain GB-D. Appl. Environ. Microbiol. 58: 3472–3481

    Google Scholar 

  • Janssen PH & Morgan HW (1992) Heterotrophic sulfur reduction byThermotoga sp. strain FjSS3.B1. FEMS Microbiol. Letts. 96: 213–218

    Google Scholar 

  • Johnson JL, Rajagopalan KV, Mukund S & Adams MWW (1993) Identification of molybdopterin as the organic component of the tungsten cofactor in four enzymes from hyperthermophilic archaea. J. Biol. Chem. 268: 4848–4853

    Google Scholar 

  • Jones WJ, Leigh JA, Mayer F, Woese CR & Wolfe RS (1983)Methanococcus jannaschii sp. nov., an extremely thermophilic methanogen from a submarine hydrothermal vent. Arch. Microbiol. 136: 254–261

    Google Scholar 

  • Jorgensen BB, Isaksen MF & Jannasch HW (1992) Bacterial sulfate reduction above 100 °C in deep-sea hydrothermal vent sediments. Science 258: 1756–1757

    Google Scholar 

  • Juszczak A, Aono S & Adams MWW (1991) The extremely thermophilic eubacterium,Thermotoga maritima, contains a novel iron-hydrogenase whose cellular activity is dependent upon tungsten. J. Biol. Chem. 266: 13834–13841

    Google Scholar 

  • Kegen SWM, Luesink EJ, Stams AJM & Zehnder AJB (1993) Purification and characterization of an extremely thermostable β-glucosidase from the hyperthermophilic archaeonPyrococcus furiosus. Eur. J. Biochem. 213: 305–312

    Google Scholar 

  • Kelly RM & Deming JW (1988) Extremely thermophilic bacteria: biological and engineering considerations. Biotech. Prog. 4: 47–62

    Google Scholar 

  • Kletzin A, (1992) Molecular characterization of thesor gene, which encodes the sulfur oxygenase/reductase of the thermoacidophilic archaeumDesulfurolobus ambivalens. J. Bacteriol. 174: 5854–5869

    Google Scholar 

  • Kim CW, Markiewicz P, Lee JJ, Schierle CF & Miller JH (1993) Studies of the hyperthermophileThermotoga maritima by random sequencing of cDNA and genomic libraries — identification and sequencing of the trpEG9(D) operon. J. Mol. Biol. 231: 960–981

    Google Scholar 

  • Klimmek O, Kroeger A, Steudel R & Holdt G (1991) Growth ofWolinella succinogenes with polysulfide as terminal acceptor of phosphorylative electron transport. Arch. Microbiol. 155: 177–182.

    Google Scholar 

  • Klingeberg M, Hashwa F & Antranikian G (1991) Properties of extremely thermophilic proteases from anaerobic hyperthermophilic bacteria. Appl. Microbiol. Biotechnol. 34: 715–719

    Google Scholar 

  • Koch R, Spreinat A, Lemke K & Antranikian G (1991) Purification and properties of a hyperthermoactive α-amylase from the archaebacteriumPyrococcus woesei. Arch. Microbiol. 155: 572–578

    Google Scholar 

  • Koch R, Zablowsk, P, Spreinat A & Antranikian G (1990) Extremely thermostable amylolytic enzyme from the archaebacteriumPyrococcus furiosus. FEMS Microbiol. Lett. 71: 21–26

    Google Scholar 

  • Kraft T, Bokranz M, Klimmek O, Schröder I, Fahrenholz F, Kojro, E & Kröger A (1993) Cloning and nucleotide sequence of thepsr A gene ofWolinella succinogenes polysulfide reductase. Eur. J. Biochem. 206: 503–510.

    Google Scholar 

  • Kristjansson JK & Stetter KO (1991) Thermophilic bacteria. In: Kristjansson JK (Ed) Thermophilic Bacteria (pp. 1–19). CRC Press, Boca Raton, FL

    Google Scholar 

  • Laderman KA, Davis BR, Krutzsch HC, Lewis MS, Griko YV, Privalov PL & Anfinsen CB (1994a) The purification and characterization of an extremely thermostable α-amylase from the hyperthermophilic archaebacteriumPyrococcus-furiosus. J. Biol. Chem. 268: 24394–24401

    Google Scholar 

  • Laderman KA, Asada K, Uemori T, Mukai H, Taguchi Y, Kato I & Anfinsen CB (1994) α-Amylase from the hyperthermophilic archaebacteriumPyrococcus-furiosus — cloning and sequencing of the gene and expression inEscherichia-coli. J. Biol. Chem. 268: 24402–24407

    Google Scholar 

  • Lauerer G, Kristjansson JK, Langworthy TA, König H & Stetter KO (1986)Methanothermus sociabilis sp. nov., a second species within theMethanothermaceae growing at 97 °C. Syst. Appl. Microbiol. 8: 100–105

    Google Scholar 

  • Le Faou A, Rajagopal BS, Daniels L & Fauque G (1990) Thiosulfate, polythionates and elemental sulfur assimilation and reduction in the bacterial world. FEMS Microbiol. Rev. 75: 351–382.

    Google Scholar 

  • Liebl W, Feil R, Gabelsberger J, Kellerman J & Schleifer KH (1992) Purification and characterization of a novel thermostable 4-α-glucanotransferase ofThermotoga maritima cloned inEscherichia coli. Eur. J. Biochem. 207: 81–88

    Google Scholar 

  • Ljungdahl LG (1986) The autotrophic pathway of acetate synthesis in acetogenic bacteria. Ann. Rev. Microbiol. 40: 415–450

    Google Scholar 

  • Ma K & Adams MWW (1993) Characterization of polysulfide dehydrogenase (NAD(P)H: acceptor oxidoreductase) from the hyperthermophilic archaeon,Pyrococcus furiosus. Abst. 92nd Ann. Meet. Am. Soc. Microbiol., K-48, Am. Soc. Microbiol., Washington, D.C.

    Google Scholar 

  • Ma K & Adams MWW (1994a) A novel non-heme iron-containing alcohol dehydrogenase from the deep sea hyperthermophilic archaeon ES-1. Abst. 93rd Ann. Meet. Am. Soc. Microbiol., K-45, Am. Soc. Microbiol., Washington, D.C.

    Google Scholar 

  • Ma K & Adams MWW (1994b) Sulfide dehydrogenase from the hyperthermophilic archaeonPyrococcus furiosus: a new multifunctional enzyme involved in the reduction of elemental sulfur. J. Bacteriol. (in the press)

  • Ma K, Robb FT & Adams MWW (1994) Purification and characterization of NADP-specific alcohol dehdrogenase and NADP-specific glutamate dehydrogenase from the hyperthermophilic archaeonThermococcus litoralis. Appl. Environ. Microbiol. 60: 562–568

    Google Scholar 

  • Ma K, Schicho RN, Kelly RM & Adams MWW (1993) Hydrogenase of the hyperthermophile,Pyrococcusfuriosus, is an elemental sulfur reductase or sulfhydrogenase: evidence for a sulfur-reducing hydrogenase ancestor. Proc. Natl. Acad. Sci. USA 90: 5341–5344

    Google Scholar 

  • Macy JM, Schröder I, Thauer RK & Kröger A (1986) Growth ofWolinella succinogenes on H2S plus fumarate and on formate plus sulfur as energy sources. Arch. Microbiol. 144: 147–150

    Google Scholar 

  • Mai X & Adams MWW (1994) Indolepyruvate ferredoxin oxidoreductase from the hyperthermophilic archaeon,Pyrococcus furiosus: a new enzyme involved in peptide fermentation. J. Biol. Chem. 269: 16726–16732

    Google Scholar 

  • Mai X, Ma K & Adams MWW (1993) Purification and characterization of 2-keto-acid ferredoxin oxidoreductases from hyperthermophilic archaea. Abst. 92nd Ann. Meet. Am. Soc. Microbiol., K-45, Am. Soc. Microbiol., Washington, D.C.

    Google Scholar 

  • Matsubara H & Saeki K (1992) Structural and functional diversity of ferredoxins and related proteins. Advs. Inorg. Chem. 38: 223–280

    Google Scholar 

  • Mehta PK, Hale TI & Christen P (1993) Aminotransferases — demonstration of homology and division into evolutionary subgroups. Eur. J. Biochem. 214: 549–561

    Google Scholar 

  • Miroshnichenko ML, Bonch-Osmolovskaya EA, Neuner A, Kostrikina NA, Chernych NA & Alikseev VA (1989)Thermococcus stetteri sp. nov., a new extremely thermophilic marine sulfurmetabolizing archaebacterium. Syst. Appl. Microbiol. 12: 257–262

    Google Scholar 

  • Mohamed ME-S, Seyfried S, Tschech A, & Fuchs G (1993) Anaerobic oxidation of phenylacetate and 4-hydroxyphenylacetate to benzoyl-coenzyme A and CO2 in denitrifyingPseudomonas sp. Arch. Microbiol. 159: 563–575.

    Google Scholar 

  • Mohamed MES, & Fuchs G (1993) Purification and characterization of phenylacetate-coenzyme A ligase from a denitrifyingPseudomonas sp., an enzyme involved in anaerobic degradation of phenylacetate. Arch. Microbiol. 159: 554–562.

    Google Scholar 

  • Möller-Zinkhan D, Börner G & Thauer RK (1989) Function of methanofuran, tetrahydromethanopterin and coenzyme F420 inArchaeglobus fulgidus. Arch. Microbiol. 152: 362–368

    Google Scholar 

  • Moore S & Stein WH (1963) Chromotagraphic determination of amino acids by the use of automatic recording equipment. Meths. Enzymol. 6: 819–831

    Google Scholar 

  • Mukund S. & Adams MWW (1990) Characterization of a tungsten-iron-sulfur protein exhibiting novel spectroscopic and redox properties from the hyperthermophilic archaebacterium,Pyrococcus furiosus. J. Biol. Chem. 265: 11508–11516

    Google Scholar 

  • Mukund S & Adams MWW (1991) The novel tungsten-iron-sulfur protein of the hyperthermophilic archaebacterium,Pyrococcus furiosus, is an aldehyde ferredoxin oxidoreductase: evidence for its participation in a unique glycolytic pathway. J. Biol. Chem. 266: 14208–14216

    Google Scholar 

  • Mukund S & Adams MWW (1993) Characterization of a novel tungsten-containing formaldehyde ferredoxin oxidoreductase from the extremely thermophilic archaeon,Thermococcus litoralis. A role for tungsten in peptide catabolism. J. Biol. Chem. 268: 13592–13600

    Google Scholar 

  • Neale AD, Scope RK, Kelly JM & Wettenhall REH (1986) The two alcohol dehydrogenases ofZymomonas mobilis — purification by different dye ligand chromatography, molecular characterization and physiological roles. Eur. J. Biochem. 154: 119–124

    Google Scholar 

  • Nelson CM, Schuppenhauer MR & Clark DS (1991) Effects of hyperbaric pressure on a deep-sea archaebacterium in stainless steel and glass-lined vessels. Appl. Environ. Microbiol. 57: 3576–3580

    Google Scholar 

  • Nelson CM, Schuppenhauer MR & Clark DS (1992) High-pressure, high-temperature bioreactor for comparing effects of hyperbaric and hydrostatic pressure on bacterial growth. Appl. Environ. Microbiol. 58: 1789–1793

    Google Scholar 

  • Neuner A, Jannasch H, Belkin S & Stetter KO (1990)Thermococcus litoralis sp. nov.: a new species of extremely thermophilic marine archaebacteria. Arch. Microbiol. 153: 205–207

    Google Scholar 

  • Ohshima T & Nishida N (1993) Purification and properties of extremely thermostable glutamate dehydrogenases from two hyperthermophilic archaebacteria,Pyrococcus woesei andPyrococcus furiosus. Biosci. Biotechnol. Biochem. 57: 945–952

    Google Scholar 

  • Olsen GJ, Woese CR & Overbeek R (1994) The winds of (evolutionary) change: breathing new life into microbiology. J. Bacteriol. 176: 1–6

    Google Scholar 

  • Ostendorp R, Liebl W, Schurig H & Jaenicke R (1993) The lactate dehydrogenase gene of the hyperthermophilic bacteriumThermotoga maritima cloned by complementation inEscherichia coli. Eur. J. Biochem. 216: 709–715

    Google Scholar 

  • Park J-B, Fan C, Hoffman BM, Adams MWW (1991) Potentiometric and electron nuclear double resonance properties of the two spin forms of the [4Fe-4S]1+ cluster in the novel ferredoxin from the hyperthermophilic archaebacterium,Pyrococcus furiosus. J. Biol. Chem. 266: 19351–19356

    Google Scholar 

  • Peak MJ, Peak JG, Stevens FJ, Blamey J, Mai X, Zhou ZH & Adams MWW (1994) The hyperthermophilic glycolytic enzyme enolase in the archaeon,Pyrococcus furiosus: comparison with mesophilic enolases. Arch. Biochem. Biophys. (in press)

  • Pfennig N & Biebl H (1976)Desulfuromonas acetoxidans gen. nov. and sp. nov., a new anaerobic, sulfur-reducing, acetate oxidizing bacterium. Arch. Microbiol. 110: 3–12

    Google Scholar 

  • Pihl TD & Maier RJ (1991) Purification and characterization of the hydrogen uptake hydrogenase from the hyperthermophilic archaebacteriumPyrodictium brockii. J. Bacteriol. 173: 1839–1844

    Google Scholar 

  • Pihl TD, Black LK, Schulman BA & Maier RJ (1992) Hydrogenoxidizing electron transport components in the hyperthermophilic archaebacteriumPyrodictium brockii. J. Bacteriol. 174: 137–143

    Google Scholar 

  • Pihl TD, Schicho RN, Kelly RM & Maier RJ (1989) Characterization of hydrogen-uptake activity in the hyperthermophilePyrodictium brockii. Proc. Natl. Acad. Sci. USA 86: 138–141

    Google Scholar 

  • Pledger RJ & Baross JA (1989) Characterization of an extremely thermophilic archaebacterium isolated from a black smoker polychaete (Paralvinella sp.) at the Juan de Fuca Ridge. Syst. Appl. Micrrobiol. 12: 249–256

    Google Scholar 

  • Pledger RJ & Baross JA (1991) Preliminary description and nutritional characterization of a chemoorganotrophic archaeobacterium growing at temperatures up to 110 °C isolated from a submarine hydrothermal vent environment. J. Gen. Microbiol. 137: 203–213

    Google Scholar 

  • Pley U, Schipka J, Gambacorta A, Jannasch HW, Fricke H, Rachel R & Stetter KO (1991)Pyrodictium abyssi sp. nov. represents a novel heterotrophic marine archaeal hyperthermophile growing at 110 °C. Syst. Appl. Microbiol. 14: 245–253

    Google Scholar 

  • Rajagopalan KV & Johnson JL (1992) The pterin molybdenum cofactors. J. Biol. Chem. 267: 10199–10202.

    Google Scholar 

  • Ritzau M, Keller M, Wessels P, Stetter KO & Zeeck A (1993) New cyclic polysulfides from hyperthermophilic archaea of the genusThermosoccus. Liebigs Ann. Chem. 1993: 871–876

    Google Scholar 

  • Robb FT, Park J-B & Adams MWW (1992) Characterization of an extremely thermostable glutamate dehydrogenase: a key enzyme in the primary metabolism of the hyperthermophilic archaebacterium,Pyrococcus furiosus. Biochim. Biophys. Acta 1120: 267–272

    Google Scholar 

  • Ruttersmith LD & Daniel RM (1991) Thermostable cellobiohydrolase from the thermophilic eubacteriumThermotoga strain FjSS3-B.1 — purification and properties. Biochem. J. 277: 887–891

    Google Scholar 

  • Schäfer S, Barkowski C & Fuchs G (1986) Carbon assimilation by the autotrophic thermophilic archaebacteriumThermoproteus neutrophilus. Arch. Microbiol. 146: 301–308

    Google Scholar 

  • Schäfer S, Götz M, Eisenreich W, Bacher A & Fuchs G (1989)13C-NMR study of autotrophic CO2fixation inThermoproteus neutrophilus. Eur. J. Biochem. 184: 151–156

    Google Scholar 

  • Schäfer T & Schönheit P (1991) Pyruvate metabolism of the hyperthermophilic archaebacteriumPyrococcus furiosus. Arch. Microbiol. 155: 366–377.

    Google Scholar 

  • Schäfer T & Schönheit P (1992) Maltose fermentation to acetate, CO2 and H2 in the anaerobic hyperthermophilic archaeonPyrococcus furiosus: evidence for the operation of a novel sugar fermentation pathway. Arch. Microbiol. 158: 188–202

    Google Scholar 

  • Schäfer T & Schönheit P (1993) Gluconeogenesis from pyruvate in the hyperthermophilic archaeonPyrococcus furiosus — involvement of reactions of the Embden-Meyerhof pathway. Arch. Microbiol. 159: 354–363

    Google Scholar 

  • Schäfer T, Selig M & Schönheit P (1993) Acetyl-CoA synthetase (ADP-forming) in archaea, a novel enzyme involved in acetate formation and ATP synthesis. Arch. Microbiol. 159: 72–83.

    Google Scholar 

  • Schauder R & Kröger A (1992) Bacterial sulfur respiration. Arch. Microbiol. 159: 491–497

    Google Scholar 

  • Schicho RN, Ma K, Adams MWW & Kelly RM (1993b) Bioenergetics of sulfur reduction in the hyperthermophilic archaeon,Pyrococcus furiosus. J. Bacteriol. 175: 1823–1830

    Google Scholar 

  • Schicho RN, Snowden LJ, Mukund S, Park J-B, Adams MWW & Kelly RM (1993a) Influence of tungsten on metabolic patterns inPyrococcus furiosus, a hyperthermophilic archaeon. Arch. Microbiol. 159: 380–385

    Google Scholar 

  • Schmitz RA, Albracht SPJ & Thauer RK (1992) A molybdenum and a tungsten isoenzyme of formylmethanofuran dehydrogenase in the thermophilic archaeonMethanobacterium wolfei. Eur. J. Biochem. 209: 1013–1018

    Google Scholar 

  • Schroeder I, Kroeger A & Macy JM (1988) Isolation of the sulphur reductase and reconstitution of the sulphur respiration ofWolinella succinogenes. Arch. Microbiol. 149: 572–579.

    Google Scholar 

  • Schuliger JW, Brown SH, Baross JA & Kelly RM (1993) Purification and characterization of a novel amylolytic enzyme from ES4, a marine hyperthermophilic archaeon. Mole. Mar. Biol. Biotechnol. 2: 76–87

    Google Scholar 

  • Schultes V, Deutzmann R & Jaenicke R (1990) Complete amino acid sequence of glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic eubacteriumThermotoga maritima. Eur. J. Biochem. 192: 25–31

    Google Scholar 

  • Schumann J, Wrba A, Jaenicke R & Stetter KO (1991) Topographical and enzymatic characterization of amylases from the extremely thermophilic eubacteriumThermotoga maritima. FEBS Letts. 282: 122–126

    Google Scholar 

  • Segerer A & Stetter KO (1989) Genus I. Sulfolobus. In: Staley JT, Bryant MP, Pfennig N & Holt JG (Eds) Bergey's Manual of Systematic Bacteriology, Vol 3 (pp. 2251–2253). Williams and Williams, Baltimore

    Google Scholar 

  • Segerer A, Neuner A, Kristjansson JK & Stetter KO (1986)Acidianus infernus gen. nov. sp. nov., andAcidianus brierleyi comb. nov.: facultatively aerobic, extremely acidophilic thermophilic sulfur-metabolizing archaebacteria. Intl. J. Syst. Bacteriol. 36: 559–564

    Google Scholar 

  • Segerer AH, Trincone A, Gahrtz M & Stetter KO (1991)Stygiolobus azoricus gen. nov., sp. nov. represents a novel genus of anaerobic, extremely thermoacidophilic archaebacteria of the OrderSulfolobales. Intl. J. Syst. Bacteriol. 41: 495–501

    Google Scholar 

  • Siebers B & Hensel R (1993) Glucose catabolism by the hyperthermophilic archaeumThermoproteus tenax. FEMS Microbiol. Letts. 111: 1–8

    Google Scholar 

  • Simpson H, Haufler UR & Daniel RM (1991) An extremely thermostable xylanase from the thermophilic eubacteriumThermotoga. Biochem. J. 277: 413–427

    Google Scholar 

  • Smith ET, Blamey JM & Adams MWW (1994) Pyruvate ferredoxin oxidoreductases of the hyperthermophilic archaeonPyrococcus furiosus and the hyperthermophilic bacteriumThermotoga maritima have different catalytic mechanisms. Biochemistry 33: 1008–1016

    Google Scholar 

  • Snowden LJ, Blumentals II & Kelly RM (1992) Regulation of proteolysis inPyrococcus furiosus, a hyperthermophilic archaebacterium. Appl. Environ. Microbiol. 58: 1134–1141

    Google Scholar 

  • Srivastava KKP, Surerus KK, Conover RC, Johnson MK, Park J-B Adams MWW & Münck E (1993) Mössbauer study of the ZnFe3S4 and NiFe3S4 clusters inPyrococcus furiosus ferredoxin. Inorg. Chem. 32: 927–936

    Google Scholar 

  • Stetter KO & Zillig W (1985)Thermoplasma and the thermophilic sulfur-dependent archaebacteria. In: Woese CR & Wolfe RS (Eds) The Bacteria, Vol VIII (pp. 85–170). Academic Press, New York

    Google Scholar 

  • Stetter KO (1982) Ultrathin mycelia forming organisms from submarine volcanos areas having an optimum growth temperature of 105 °C. Nature 300: 258–260

    Google Scholar 

  • Stetter KO (1986). Diversity of extremely thermophilic archaebacteria. In: Brock TD (Ed) The Thermophiles, General, Molecular and Applied Microbiology, (pp. 39–74). John Wiley, New York

    Google Scholar 

  • Stetter KO, Fiala G, Huber G, Huber R & Segerer G (1990) Hyperthermophilic microorganisms. FEMS Microbiol. Rev. 75: 117–124

    Google Scholar 

  • Stetter KO, König H & Stackebrandt E (1983)Pyrodictium gen. nov., a new genus of submarine disc-shaped sulfur reducing archaebacteria growing optimally at 105 °C. Syst. Appl. Microbiol. 4: 535–551

    Google Scholar 

  • Stetter KO, Thomm M, Winter J, Wildegruber G, Huber H, Zillig W, Janekovic D, König H, Palm P & Wunderl S (1981)Methanothermus fervidus, sp. nov., a novel extremely thermophilic methanogen isolated from an Icelandic hot spring. Zbl. Bakt. Hyg., I Abt. Orig. C 2: 166–178

    Google Scholar 

  • Stetter KO (1988)Archaeoglobus fulgidus gen. nov., sp. nov.: a new taxon of extremely thermophilic archaebacteria. Syst. Appl. Microbiol. 10: 172–173

    Google Scholar 

  • Strauss A, Eisenreich W, Bacher A & Fuchs G (1992)13C-NMR study of autotrophic CO2 fixation pathways in the sulfur-reducing archaebacteriumThermoproteus neutrophilus and in the phototrophic eubacteriumChloroflexus aurantiacus. Eur. J. Biochem. 205: 853–866

    Google Scholar 

  • Stetter KO, Huber R, Blochl E, Kurr M, Eden RD, Fielder M, Cash H & Vance I (1993) Hyperthermophilic archaea are thriving in deep north sea and alaskan oil reservoirs. Nature 365: 6448.

    Google Scholar 

  • Stouthamer, AH (1991) Metabolic regulation including anaerobic metabolism inParacoccus denitrificans. J. Bioenerg. Biomemb. 23: 163–185.

    Google Scholar 

  • Thauer RK, Jungermann K & Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 41: 100–180.

    Google Scholar 

  • Tilstra L, Eng G, Olson GJ & Wang FW (1992) Reduction of sulfur from polysulphidic model compounds by the hyperthermophilic archaebacteriumPyrococcus furiosus. Fuel 71: 779–784

    Google Scholar 

  • Tomschy A, Glockshuber R & Jaenicke R (1993) Functional expression of the glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic eubacteriumThermotoga maritima inEscherichi coli — authenticity and kinetic properties of the recombinant enzyme. Eur. J. Biochem. 214: 43–67

    Google Scholar 

  • Tristan GR & Smith RH (1963). The amino acid composition of some purified proteins. Advs. Prot. Chem. 18: 227–318

    Google Scholar 

  • Völkl P, Huber R, Brobner E, Rachel R, Burggraf S, Trincone A & Stetter, KO (1993)Pyrobaculum aerophilum sp. nov., a novel nitrate-reducing hyperthermophilic archaeum. Appl. Environ. Microbiol. 59: 2918–2926

    Google Scholar 

  • Wächtershäuser G (1992) Groundworks for an evolutionary biochemistry: the iron-sulfur world. Prog. Biophys. Mol. Biol. 58: 85–201

    Google Scholar 

  • White H, Feicht R, Huber C, Lottspeich F, & Simon H (1991) Purification and some properties of the tungsten-containing carboxylic acid reductase fromClostridium formicoaceticum. Biol. Chem. Hoppe-Seyler 373: 123–132

    Google Scholar 

  • Wiegel JKW & Ljungdahl LG (1986). The importance of thermophilic bacteria in biotechnology. CRC Crit. Rev. in Biotechnol. 3: 39–107

    Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol. Rev. 51: 221–271

    Google Scholar 

  • Woese CR, Kandler O & Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains of Archaea, Bacteria and Eucarya. Proc. Natl. Acad. Sci. USA 87: 4576–4579

    Google Scholar 

  • Woese CR, Magrum LJ & Fox GE (1978) Archaebacteria. J. Mol. Evol. 11: 245–252

    Google Scholar 

  • Wrba A, Jaenicke R, Huber R & Stetter KO (1990b) Lactate dehydrogenase from the extreme thermophileThermotoga maritima. Eur. J. Biochem. 188: 195–201

    Google Scholar 

  • Wrba A, Schweiger A, Schultes V, Jaenicke R & Zavodszky P (1990a) Extremely thermophlic D-glyceraldehyde-3-phosphate dehydrogenase from the eubacteriumThermotoga maritima. Biochemistry 29: 7584–7592

    Google Scholar 

  • Xing R & Whitman, WB (1992) Characterization of amino acid aminotransferases ofMethanococcus aeolicus. J. Bacteriol. 174: 541–548.

    Google Scholar 

  • Yamamoto I, Saiki T, Liu S-M & Ljungdahl LG (1983) Purification and properties of NADP-dependent formate dehydrogenase fromClostridium thermoaceticum, a tungsten-selenium protein. J. Biol. Chem. 258: 1826–1832.

    Google Scholar 

  • Zellner G, Stackebrandt E, Kneifel H, Messner P, Sleytr UB, Conway de Macario E, Zabel H-P, Stetter KO & Winter J (1989) Isolation and characterization of a thermophilic, sulfate-reducing archaebacterium,Archaeoglobus fulgidus strain Z. Syst. Appl. Microbiol. 11: 151–160

    Google Scholar 

  • Zhou H, Wood AG, Widdel F & Bryant MP (1988) An extremely thermophilicMethanococcus from a deep sea hydrothermal vent and its plasmid. Arch. Microbiol. 150: 178–183.

    Google Scholar 

  • Zillig W, Gierl G, Schreiber G, Wunderl S, Janekovic D, Stetter KO & Klenk HP (1983a) The archaebacteriumThermofilum pendens represents a novel genus of the thermophilic, anaerobic sulfur-respiring Thermoproteales. Syst. Appl. Microbiol. 4: 79–87

    Google Scholar 

  • Zillig W, Holtz I, Janekovic D, Schafer W & Reiter WD (1983b) The archaebacteriumThermococcus celer represents a novel genus within the thermophilic branch of the archaebacteria. Syst. Appl. Microbiol. 4: 88–94

    Google Scholar 

  • Zillig W, Holz I, Janekovic D, Klenk H-P, Imsel E, Trent J, Wunderl S, Forjaz VH, Coutinho R & Ferreira T (1990)Hyperthermus butylicus, a hyperthermophilic sulfur-reducing archaebacterium that ferments peptides. J. Bacteriol. 172: 3959–3965

    Google Scholar 

  • Zillig W, Holz I, Klenk H-P, Trent J, Wunderl, Janekovic D, Imsel E & Hass B (1987)Pyrococcus woesei, sp. nov., an ultrathermophile marine archaebacterium, representing a novel order,Thermococcales. Syst. Appl. Microbiol. 9: 62–70

    Google Scholar 

  • Zillig W, Stetter KO, Prangishvilli D, Schafer W, Wunderl S, Jankekovic D, Holz J & Palm P (1982)Desulfurococcaceae, the second family of extremely thermophilic, anaerobic, sulfur-respiringThermoproteales. Zbl. Bakt. Hyg., I Abt. Orig. C 3: 304–317

    Google Scholar 

  • Zillig W, Stetter KO, Schäfer W, Janekovic D, Wunderl S, Holz I & Palm P (1981)Thermoproteales: a novel type of extremely thermoacidophilic anaerobic archaebacterium isolated from Icelandic solfataras. Zbl. Bakt. Hyg., I Abt. Orig. C 2: 200–227

    Google Scholar 

  • Zillig W, Yeats S, Holz I, Böck A, Rettenberger M, Gropp F & Simon G (1986)Desulfurolobus ambivalens, gen. nov., sp. nov., an autotrophic archaebacterium facultatively oxidizing or reducing sulfur. Syst. Appl. Microbiol. 8: 197–203

    Google Scholar 

  • Zwickl P, Fabry S, Bogedain C, Haas A & Hensel R (1990) Glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic archaebacteriumPyrococcus woesei: characterization of the enzyme, cloning and sequencing the gene, and expression inEscherichia coli. J. Bacteriol. 172: 4329–4338

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kelly, R.M., Adams, M.W.W. Metabolism in hyperthermophilic microorganisms. Antonie van Leeuwenhoek 66, 247–270 (1994). https://doi.org/10.1007/BF00871643

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00871643

Key words

Navigation