Skip to main content
Log in

Photosynthetic electron transport and anaerobic metabolism in purple non-sulfur phototrophic bacteria

  • Research Articles
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Purple non-sulfur phototrophic bacteria, exemplifed byRhodobacter capsulatus andRhodobacter sphaeroides, exhibit a remarkable versatility in their anaerobic metabolism. In these bacteria the photosynthetic apparatus, enzymes involved in CO2 fixation and pathways of anaerobic respiration are all induced upon a reduction in oxygen tension. Recently, there have been significant advances in the understanding of molecular properties of the photosynthetic apparatus and the control of the expression of genes involved in photosynthesis and CO2 fixation. In addition, anaerobic respiratory pathways have been characterised and their interaction with photosynthetic electron transport has been described. This review will survey these advances and will discuss the ways in which photosynthetic electron transport and oxidation-reduction processes are integrated during photoautotrophic and photoheterotrophic growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aagaard J & Sistrom WR (1972) Control of synthesis of reaction center bacteriochlorophyll in photosynthetic bacteria. Photochem. Photobiol. 15: 209–225

    Google Scholar 

  • Allen JP, Feher G, Yeates TO, Komiya H & Rees D (1987) The structure of the reaction center fromRhodobacter sphaeroides R-26: the cofactors. Proc. Natl. Acad. Sci. USA 84: 5730–5734

    Google Scholar 

  • Ballard AL, McEwan AG, Richardson DJ, Jackson JB & Ferguson SJ (1990)Rhodobacter capsulatus strain BK5 possesses a membrane-bound respiratory nitrate reductase rather than the periplasmic enzyme found in other strains. Arch. Microbiol. 154: 301–303

    Google Scholar 

  • Bamforth CW & Quayle JR (1978) The dye-linked alcohol dehydrogenase ofRhodopseudomonas acidophila. Biochem. J. 169: 677–686

    Google Scholar 

  • —— (1979) Structural aspects of a dye-linked alcohol dehydrogenase ofRhodopseudomonas acidophila. Biochem. J. 181: 517–524

    Google Scholar 

  • Barr SB & Kogama T (1991) Oxidative stress responses inEscherichia coli andSalmonella typhimurium. Microbiol. Rev. 55: 561–585

    Google Scholar 

  • Bastian NR, Kay CJ, Barber MJ & Rajagopalan KV (1991) Spectroscopic studies of the molybdenum-containing dimethylsulphoxide reductase fromRhodobacter sphaeroides f. sp.denitrificans. J. Biol. Chem. 266: 45–51

    Google Scholar 

  • Bauer CE, Buggy J & Mosley C (1993) Control of photosystem genes inRhodobacter capsulatus. Trends Genet. 9: 56–60

    Google Scholar 

  • Bauer CE, Young DA & Marrs BC (1988) Analysis of theRhodobacter capsulatus puf operon location of the oxygen-regulated promoter region and the identification of additionalpuf-encoded genes. J. Biol. Chem. 263: 4820–4827

    Google Scholar 

  • Bauer CE & Marrs BL (1988)Rhodobacter capsulatus puf operon encodes a regulatory protein (PufQ) for bacteriochlorophyll synthesis. Proc. Natl. Acad. Sci. 85: 7074–7078

    Google Scholar 

  • Beatty JT & Gest H (1981) Biosynthetic and bioenergetic functions of citric acid cycle reactions inRhodopseudomonas capsulata. J. Bacteriol. 148: 584–593

    Google Scholar 

  • Belasco JG, Beatty JT, Adams CW, Gabain A von & Cohen SN (1985) Differential expression of photosynthetic genes inRhodopseudomonas capsulata results from segmental differences in stability within a polycistronic transcript. Cell 40: 171–181

    Google Scholar 

  • Bell LC, Richardson DJ & Ferguson SJ (1990) Periplasmic and membrane-bound respiratory nitrate reductases inThiosphera pantotropha: the periplasmic enzyme catalyses the first step in aerobic denitrification. FEBS Lett. 265: 85–87

    Google Scholar 

  • ——, (1992) Identification of nitric oxide reductase activity inRhodobacter capsulatus: the electron transport pathway can either use or bypass both cytochrome c2 and the cytochrome bc1 complex. J. Gen. Microbiol. 138: 437–443

    Google Scholar 

  • Benson N, Farrar JA, McEwan AG & Thomson AJ (1992) Detection of the optical bands of Molybdenum (v) in DMSO reductase (Rhodobacter capsulatus) by low temperature MCD spectroscopy. FEBS Lett. 307: 169–172

    Google Scholar 

  • Bourret RB, Borkovich KA & Simon MI (1991) Signal transduction pathways involving protein phosphorylation in prokaryotes. Ann. Rev. Biochem. 60: 401–441

    Google Scholar 

  • Brune DC & Truper HG (1986) Noncyclic electron transport in chromatophores from photolithotrophically grownRhodobacter sulfidophilus. Arch. Microbiol. 145: 295–301

    Google Scholar 

  • Brune DC (1989) Sulfur oxidation by phototrophic bacteria. Biochim. Biophys. Acta 975: 189–221

    Google Scholar 

  • Burke DH, Alberti M, Armstrong GA & Hearst JE (1991) The complete nucleotide sequence of the 46 kb photosynthetic gene cluster ofRhodobacter capsulatus. EMBL Data Library accession number Z11165

  • Byrne MD & Nicholas DJD (1987) A membrane-bound dissimilatory nitrate reductase fromRhodobacter sphaeroides f. sp.denitrificans. Biochim. Biophys. Acta 915: 120–124

    Google Scholar 

  • Chory J, Donohue TJ, Varga AR, Staehelin LA & Kaplan S (1984) Induction of the photosynthetic membranes ofRhodopseudomonas sphaeroides: biochemical and morphological studies. J. Bacteriol. 159: 540–554

    Google Scholar 

  • Cohen-Bazire G, Sistrom WR & Stanier RY (1957) Kinetic studies of pigment synthesis by non-sulfur purple bacteria. J. Cell Comp. Physiol. 49: 25–68

    Google Scholar 

  • Cotton NPJ & Jackson JB (1988) Energy coupling to ATP synthesis and pyridine nucleotide transhydrogenase in chromatophores from photosynthetic bacterium. FEBS Lett. 229: 303–307

    Google Scholar 

  • Daldal F, Cheng S, Applebaum J, Davidson E & Prince RC (1986) Cytochrome c2 is not essential for photosynthetic growth ofRhodopseudomonas capsulata. Proc. Natl. Acad. Sci. USA 83: 2012–2016

    Google Scholar 

  • Deisenhofer J, Epp O, Miki K, Huber R & Michel H (1984) X-ray structure analysis of a membrane protein complex. J. Mol. Biol. 180: 385–398

    Google Scholar 

  • Deisenhofer J & Michel H (1989) The photosynthetic reaction centre from the purple bacteriumRhodopseudomonas viridis. EMBO J. 8: 2149–2170

    Google Scholar 

  • Donohue TJ, McEwan AG, Doren S van, Crofts AR & Kaplan S (1988) Phenotypic and genetic characterization of cytochrome c2 deficient mutants ofRhodobacter sphaeroides. Biochemistry 27: 1918–1925

    Google Scholar 

  • Donohue TJ & Kaplan S (1991) Genetic techniques inRhodospirillaceae. Methods Enzymol. 204: 459–485

    Google Scholar 

  • Drews G & Imhoff JF (1991) Purple phototrophic bacteria. In: Shively JM & Barton LL (Eds) Variations in Autotrophic Life (pp 51–97) Academic Press, London

    Google Scholar 

  • Drews G & Oelze J (1981) Organization and differentiation of membranes of phototrophic bacteria. Adv. Microbiol. Physiol. 22: 1–92

    Google Scholar 

  • Drews G (1985) Structure and functional organization of light-harvesting complexes and photochemical reaction centres in membranes of phototrophic bacteria. Microbiol. Rev. 49: 59–70

    Google Scholar 

  • Dutton PL & Prince RC (1978) Reaction center-driven cytochrome interactions in electron and proton translocation and energy coupling. In: Clayton RK & Sistrom WR (Eds) The Photosynthetic Bacteria (pp 525–570) Plenum Press, New York

    Google Scholar 

  • Dutton PL & Evans WC (1978) Metabolism of aromatic compounds byRhodospirillaceae. In: Clayton RK & Sistrom WR (Eds) The Photosynthetic Bacteria (pp 719–726) Plenum Press, New York

    Google Scholar 

  • Falcone DL, Quivey RG & Tabita FR (1988) Transposon mutagenesis and physiological analysis of strains containing inactivated form I and form II ribulose bisphosphate carboxylase/oxygenase genes. J. Bacteriol. 170: 5–11

    Google Scholar 

  • Falcone DL & Tabita FR (1991) Expression of endogenous and foreign ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) genes in a Rubisco deletion mutant ofRhodobacter sphaeroides. J. Bacteriol. 173: 2099–2108

    Google Scholar 

  • Farchaus JW, Barz WP, Grunberg H & Oesterhelt D (1992) Studies of thepufX polypeptide and its requirement for photoheterotrophic growth inRhodobacter capsulatus. EMBO J. 11: 2779–2788

    Google Scholar 

  • Feher G, Allen JP, Okamura MY & Rees DC (1989) Structure and function of bacterial photosynthetic reaction centres. Nature 339: 111–116

    Google Scholar 

  • Ferguson SJ, Jackson JB & McEwan AG (1987) Anaerobic respiration in theRhodospirillaceae: characterisation of pathways and evaluation of roles in redox balancing during photosynthesis. FEMS Microbiol. Rev. 46: 117–143

    Google Scholar 

  • Gennis RB, Barquera B, Hacker B, Doren SR von, Arnaud S, Crofts AR, Davidson E, Gray KA & Daldal F (1993) The bc1 complexes ofRhodobacter sphaeroides andRhodobacter capsulatus. J. Bioenerg. Biomemb. 25: 195–209

    Google Scholar 

  • Gibson JL & Tabita FR (1977) Different molecular forms of ribulose 1,5-bisphosphate carboxylase fromRhodopseudomonas sphaeroides. J. Biol. Chem. 252: 943–949

    Google Scholar 

  • —— (1985) Structural differences in the catalytic subunits of form I and form II ribulose 1,5-bisphosphate carboxylase/oxygenase fromRhodopseudomonas sphaeroides. J. Bacteriol. 164: 1188–1193

    Google Scholar 

  • —— (1988) Localization and mapping of CO2 fixation genes within two gene clusters inRhodobacter sphaeroides. J. Bacteriol. 170: 2153–2158

    Google Scholar 

  • —— (1993) Nucleotide sequence and functional analysis of CbbR, a positive regulator of the Calvin cycle operons ofRhodobacter sphaeroides. J. Bacteriol. 175: 5778–5784

    Google Scholar 

  • Gilles-Gonzales MA, Ditta GS & Helinski DR (1991) A haemoprotein with kinase activity encoded by the oxygen sensor ofRhozobium meliloti. Nature 350: 170–172

    Google Scholar 

  • Hallenbeck PL, Lerchen R, Hessler P & Kaplan S (1990a) Roles of CfxA, CfxB and external electron acceptors in regulation of ribulose 1,5-bisphosphate carboxylase/oxygenase expression ofRhodobacter sphaeroides. J. Bacteriol. 172: 1736–1748

    Google Scholar 

  • —— (1990b) Phosphoribulokinase activity and regulation of CO2 fixation critical for photosynthetic growth ofRhodobacter sphaeroides. J. Bacteriol. 172: 1749–1761

    Google Scholar 

  • Hallenbeck PL & Kaplan S (1988) Structural gene regions ofRhodobacter sphaeroides involved in CO2 fixation. Photosynth. Res. 19: 63–71

    Google Scholar 

  • Hanlon SP, Holt RA & McEwan AG (1992) The 44 kDa c-type cytochrome induced inRhodobacter capsulatus during growth with dimethylsulphoxide as an electron acceptor is a cytochrome c peroxidase. FEMS Microbiol. Lett. 97: 283–288

    Google Scholar 

  • Hanlon SP, Holt RA, Moore GR & McEwan AG (1994) Isolation and characterisation of a strain ofRhodobacter sulfidophilus: a bacterium which grows autotrophically with dimethylsulfide as electron donor. Microbiology (in press)

  • Hansen TA & Gemerden H van (1972) Sulfide utilization by purple nonsulfur bacteria. Arch. Microbiol. 86: 49–56

    Google Scholar 

  • Hansen TA & Veldkamp H (1973)Rhodopseudomonas sulfidophila, nov. spec., a new species of the purple nonsulfur bacteria. Arch. Microbiol. 92: 45–58

    Google Scholar 

  • Henikoff S, Haughn GW, Calvo M & Wallace JC (1988) A large family of bacterial activator proteins. Proc. Natl. Acad. Sci. USA 85: 6620–6606

    Google Scholar 

  • Imhoff JH, Truper HG & Pfennig N (1984) Rearrangement of the species and genera of the phototrophic ‘Purple Nonsulfur Bacteria’. Int. J. Syst. Bacteriol. 34: 340–343

    Google Scholar 

  • Jackson JB (1988) Bacterial photosynthesis. In: Anthony C (Ed) Bacterial Energy Transduction (pp 317–376) Academic Press, London

    Google Scholar 

  • —— (1991) The proton-translocating nicotinamide adenine dinucleotide transhydrogenase. J. Bioenerg. Biomemb. 23: 715–741

    Google Scholar 

  • Jenney FE & Daldal F (1993) A novel membrane-associated c-type cytochrome cyt. c y can mediate the photosynthetic growth ofRhodobacter capsulator andRhodobacter sphaeroides. EMBO J. 12: 1283–1292

    Google Scholar 

  • Jones MR, McEwan AG & Jackson JB (1990) The role of c-type cytochromes in the photosynthetic electron transport pathway ofRhodobacter capsulatus. Biochim. Biophys. Acta 1019: 59–66

    Google Scholar 

  • Jones MR, Richardson DJ, McEwan AG, Ferguson SJ & Jackson JB (1990b)In vivo redox poising of the cyclic electron transport system ofRhodobacter capsulatus and the effects of the auxiliary oxidants nitrate, nitrous oxide, and trimethylamide-N-oxide as revealed by multiple short flash excitation. Biochim. Biophys. Acta 1017: 209–216

    Google Scholar 

  • Jouanneau Y & Tabita FR (1986) Independent regulation of synthesis of form I and form II ribulose bisphosphate carboxylase/oxygenase inRhodopseudomonas sphaeroides. J. Bacteriol. 165: 620–624

    Google Scholar 

  • Kelly DJ, Richardson DJ, Ferguson SJ & Jackson JB (1988) Isolation of transposon Tn5 insertion mutants ofRhodobacter capsulatus unable to reduce trimethylamine-N-oxide and dimethylsulphoxide. Arch. Microbiol. 150: 138–144

    Google Scholar 

  • Kiley PJ & Kaplan S (1987) Cloning, DNA sequence, and expression of theRhodobacter sphaeroides light-harvesting B800–850 genes. J. Bacteriol. 169: 3268–3276

    Google Scholar 

  • —— (1988) Molecular genetics of photosynthetic membrane biosynthesis inRhodobacter sphaeroides. Microbiol. Rev. 52: 50–69

    Google Scholar 

  • Klemme JH (1969) Studies on the mechanism of NAD-photoreduction by chromatophores of the facultative phototrophRhodopseudomonas capsulata. Z. Naturforsch 246: 67–76

    Google Scholar 

  • Klug G (1991) Endonucleolytic degradation ofpuf mRNA inRhodobacter capsulatus is influenced by oxygen. Proc. Natl. Acad. Sci. USA 88: 1765–1769

    Google Scholar 

  • —— (1993a) Regulation of expression of photosynthesis genes in anoxygenic photosynthetic bacteria. Arch. Microbiol. 159: 397–404

    Google Scholar 

  • —— (1993b) The role of mRNA degradation in the regulated expression of bacterial photosynthesis genes. Mol. Microbiol. 9: 1–7

    Google Scholar 

  • La Monica RF & Marrs BL (1976) The branched respiratory system of photosynthetically grownRhodopseudomonas capsulata. Biochim. Biophys. Acta 423: 431–439

    Google Scholar 

  • Lascelles J (1960) The formation of ribulose 1,5-diphosphate carboxylase by growing cultures ofAthiorhodaceae. J. Gen. Microbiol. 23: 449–510

    Google Scholar 

  • Lee KJ, Kiley PJ & Kaplan S (1989) Posttranscriptional control ofpuc operon expression of B800–850 light-harvesting complex formation inRhodobacter sphaeroides. J. Bacteriol. 171: 3391–3405

    Google Scholar 

  • Madigan MT & Gest H (1979) Growth of the photosynthetic bacteriumRhodopseudomonas capsulata chemoautotrophically in darkness with H2 as the energy source. J. Bacteriol. 137: 524–530

    Google Scholar 

  • —— (1978) Growth of a photosynthetic bacterium anaerobically in darkness, supported by ‘oxidant dependent’ sugar fermentation. Arch. Microbiol. 117: 119

    Google Scholar 

  • McEwan AG, Cotton NPJ, Ferguson SJ & Jackson JB (1985) The role of auxiliary oxidants in the maintenance of a balanced redox poise for photosynthesis in bacteria. Biochim. Biophys. Acta 810: 140–147

    Google Scholar 

  • McEwan AG, Wetzstein HG, Jackson JB & Ferguson SJ (1985) Periplasmic location of the terminal reductase of trimethylamine-N-oxide and dimethylsulphoxide respiration in the photosynthetic bacteriumRhodopseudomonas capsulata. Biochim. Biophys. Acta 806: 410–417

    Google Scholar 

  • McEwan AG, Wetzstein HG, Meyer O, Jackson JB & Ferguson SJ (1987) The periplasmic nitrate reductase ofRhodobacter capsulatus: purification, characterisation and distinction from a single reductase for trimethylamine-N-oxide, dimethylsulphoxide and chlorate. Arch. Microbiol. 147: 340–345

    Google Scholar 

  • McEwan AG, Ferguson SJ & Jackson JB (1991) Purification and properties of dimethylsulphoxide reductase fromRhodobacter capsulatus. Biochem. J. 274: 305–307

    Google Scholar 

  • McEwan AG, Richardson DJ, Hudig H, Ferguson SJ & Jackson JB (1989) Identification of cytochromes involved in trimethylamine-N-oxide and dimethylsulphoxiderespiration inRhodobacter capsulatus. Biochim. Biophys. Acta 810: 308–314

    Google Scholar 

  • McEwan AG, Jackson JB & Ferguson SJ (1984) Rationalisation of the properties of nitrate reductase inRhodopseudomonas capsulata. Arch. Microbiol. 137: 344–349

    Google Scholar 

  • McEwan AG, Greenfield AJ, Wetzstein HG, Jackson JB & Ferguson SJ (1985) Nitrous oxide respiration by members of the familyRhodospirillaceae and the nitrous oxide reductase ofRhodopseudomonas capsulata. J. Bacteriol. 164: 823–830

    Google Scholar 

  • McEwan AG, Ferguson SJ & Jackson JB (1983) Electron flow to dimethylsulphoxide and trimethylamine-N-oxide generates a membrane potential inRhodopseudomonas capsulata. Arch. Microbiol. 136: 300–305

    Google Scholar 

  • McEwan AG, Richardson DJ, Jones MR, Jackson JB & Ferguson SJ (1990) The function and components of anaerobic respiration inRhodobacter capsulatus. In: Drews G & Dawes EA (Eds) Molecular Biology of Membrane-bound Complexes of Phototrophic Bacteria (pp 433–442) Plenum Press, New York

    Google Scholar 

  • Michelski WP, Hein DP & Nicholas DJD (1986) Purification and characterization of nitrous oxide reductase fromRhodopseudomonas sphaeroides f. sp.denitrificans. Biochim. Biophys. Acta 872: 50–60

    Google Scholar 

  • Muller FM (1933) On the metabolism of the purple sulfur bacteria in organic media. Arch. Mikrobiol. 4: 131–166

    Google Scholar 

  • Myatt JF, Cotton NPJ & Jackson JB (1987) Protonmotive activity of the cytochrome bc1 complex in chromatophores ofRhodobacter capsulatus in the presence of myxothiazol and antimycin A. Biochim. Biophys. Acta 890: 251–259

    Google Scholar 

  • Neutzling O, Pfleider M & Truper HG (1985) Dissimilatory sulphur metabolism in phototrophic ‘nonsulphur’ bacteria. J. Gen. Microbiol. 131: 791–798

    Google Scholar 

  • Nitschke W & Rutherford AW (1991) Photosynthetic reaction centres: variations on a common structural theme? Trends Biochem. Sci. 16: 241–245

    Google Scholar 

  • Olson JG, Ormerod JG, Amesz J, Stackebrandt E & Truper HG (1988) Green photosynthetic bacteria. Plenum Press, New York

    Google Scholar 

  • Parsonage D, Greenfield AJ & Ferguson SJ (1986) Evidence that energy conserving electron transport pathways to nitrate and cytochrome to branch at ubiquinone inParacoccus denitrificans. Arch. Microbiol. 145: 191–196

    Google Scholar 

  • Pollock V & Barber MJ (1993) Cloning biotin sulphoxide reductase. FASEB J. Abstract 647

  • Preker P, Hubner P, Schmahl M, Klipp W & Bickle TA (1992) Mapping and characterization of the promoter elements of the regulatorynif genesrpoN,nifA1 andnifA2 inRhodobacter capsulatus. Mol. Microbiol. 6: 1035–1047

    Google Scholar 

  • Prince RC, Davidson E, Haith CE & Daldal F (1986) Photosynthetic electron transfer in the absence of cytochrome c2 inRhodopseudomonas capsulata: cytochrome c2 is not essential for electron flow from the cytochrome bc1 complex to the photochemical reaction center. Biochemistry 25: 5208–5214

    Google Scholar 

  • Prince RC & Daldal F (1987) Physiological electron donors to the photochemical reaction center ofRhodobacter capsulatus. Biochim. Biophys. Acta 894: 370–378

    Google Scholar 

  • Richardson DJ, King GF, Kelly DJ, McEwan AG, Jackson JB & Ferguson SJ (1988) The role of auxiliary oxidants in maintaining redox balance during phototrophic growth ofRhodobacter capsulatus on propionate and butyrate. Arch. Microbiol. 150: 130–137

    Google Scholar 

  • Richardson DJ, McEwan AG, Jackson JB & Ferguson SJ (1990) Identification of cytochromes involved in the transfer of electrons to the periplasmic nitrate reductase ofRhodobacter capsulatus and resolution of a soluble nitrate reductase-cytochrome c552 redox complex. Eur. J. Biochem. 194: 263–170

    Google Scholar 

  • Richardson DJ, Bell LC, McEwan AG, Jackson JB & Ferguson SJ (1991) Cytochrome c2 is essential for electron transfer to nitrous oxide reductase from physiological substrates inRhodobacter capsulatus and can act as an electron donorin vitro. Eur. J. Biochem. 199: 677–683

    Google Scholar 

  • Rott MA, Witthuhn VC, Schilke BA, Soranno M, Ali A & Donohue TJ (1993) Genetic evidence for the role of isocytochrome c2 in photosynthetic growth ofRhodobacter sphaeroides spd mutants. J. Bacteriol. 175: 358–366

    Google Scholar 

  • Rott MA, Fitch J, Meyer TE & Donohue TJ (1992) Regulation of a cytochrome c2 isoform in wild-type and cytochrome c2 mutant strains ofRhodobacter sphaeroides. Arch. Biochem. Biophys. 292: 576–582

    Google Scholar 

  • Rott MA & Donohue TJ (1990)Rhodobacter sphaeroides spd mutations allow cytochrome c2-independent photosynthetic growth. J. Bacteriol. 172: 1954–1961

    Google Scholar 

  • Satoh T, Hashino Y & Vitamura H (1976)Rhodopseudomonas f. sp.denitrificans, a denitrifying strain as a subspecies ofRhodopseudomonas sphaeroides. Arch. Microbiol. 108: 265–269

    Google Scholar 

  • Satoh T & Kurihara FN (1987) Purification and properties of dimethylsulphoxide reductase containing a molybdenum cofactor from a photodenitrifierRhodopseudomonas sphaeroides f. sp.denitrificans. J. Biochem. 102: 191–197

    Google Scholar 

  • Sawada E, Satoh T & Kitamura H (1978) Purification and properties of a dissimilatory nitrite reductase of a denitrifying, phototrophic bacterium. Plant Cell Physiol. 19: 1339–1351

    Google Scholar 

  • Sawada E & Satoh T (1980) Periplasmic location of dissimilatory nitrate and nitrite reductase in a denitrifying phototrophic bacterium. Plant Cell Physiol. 23: 1121–1124

    Google Scholar 

  • Schneider K, Muller U, Schram U & Klipp W (1993) Demonstration of a molybdenum- and vanadium-independent nitrogenase in anif HDK-deletion mutant ofRhodobacter capsulatus. Eur. J. Biochem. 195: 653–661

    Google Scholar 

  • Schultz JE & Weaver PF (1982) Fermentation and anaerobic respiration byRhodospirillum rubrum andRhodopseudomonas capsulata. J. Bacteriol. 149: 181–190

    Google Scholar 

  • Scolnick PA & Marrs BL (1987) Genetic research with photosynthetic bacteria. Ann. Rev. Microbiol. 41: 703–726

    Google Scholar 

  • Sganga MW & Bauer CE (1992) Regulatory factors controlling photosynthetic reaction center and light-harvesting gene expression inRhodobacter capsulatus. Cell 68: 945–954

    Google Scholar 

  • Shively JM, Davidson E & Marrs BL (1984) Derepression in the synthesis of the intermediate and large forms of ribulose 1,5-bisphosphate carboxylase/oxygenase inRhodopseudomonas capsulata. Arch. Microbiol. 138: 233–236

    Google Scholar 

  • Sojka GA (1978) Metabolism of nonaromatic organic compounds. In: Clayton RK & Sistrom WR (Eds) The Photosynthetic Bacteria (pp 707–718) Plenum Press, New York

    Google Scholar 

  • Stackebrandt E, Murray RGE & Truper HG (1988)Proteobacteria classic nov. a name for the phylogenetic taxon that includes the ‘Purple Bacteria and their relatives’. Int. J. Syst. Bacteriol. 38: 321–325

    Google Scholar 

  • Stock JB, Ninfa AJ & Stock AM (1989) Protein phosphorylation and regulation of adaptive response in bacteria. Microbiol. Rev. 53: 450–490

    Google Scholar 

  • Tabita FR, Gibson JL, Bowien B, Dijkhuizen L & Meijer WG (1992) Uniform designation for genes of the Calvin-Benson-Bassham reductive pentose phosphate pathway of bacteria. FEMS Microbiol. Lett. 99: 107–110

    Google Scholar 

  • Tabita FR (1988) Molecular and cellular regulation of autotrophic carbon dioxide fixation in microorganisms. Microbiol. Rev. 52: 155–189

    Google Scholar 

  • Taylor DP, Cohen SN, Clark WG & Marrs BL (1983) Alignment of the genes and restriction maps of the photosynthetic region of theRhodopseudomonas capsulata chromosome by a conjugation-mediated marker rescue technique. J. Bacteriol. 154: 580–590

    Google Scholar 

  • Tichy H-V, Albien KO, Gad'on N & Drews G (1991) Analysis of theRhodobacter capsulates puc operon: thepuc C gene plays a central role in the regulation of LHII (B800–850 complex) expression. EMBO J 10: 2949–2956

    Google Scholar 

  • Uffen RL (1978) Fermentative metabolism and growth of photosynthetic bacteria. In: Clayton RK & Sistrom WR (Eds) The Photosynthetic Bacteria (pp 857–872) Plenum Press, New York

    Google Scholar 

  • Vignais PM, Colbeau A, Willison JC & Jouanneau Y (1985) Hydrogenase, nitrogenase, and hydrogen metabolism in the photosynthetic bacteria. Adv. Microbiol. Physiol. 26: 155–234

    Google Scholar 

  • Visscher PT & Gemerden H van (1991) Photo-autotrophic growth ofThiocapsa roseopersicina on dimethylsulphide. FEMS Microbiol. Lett. 81: 247–250

    Google Scholar 

  • Wang G, Angermuller S & Klipp W (1993) Characterization ofRhodobacter capsulatus genes encoding a molybdenum transport system and putative molybdenum-pterin binding proteins. J. Bacteriol. 175: 3031–3042

    Google Scholar 

  • Wang X, Falcone DL & Tabita FR (1993a) Reductive pentose phosphate-independent CO2 fixation inRhodobacter sphaeroides and evidence that ribulose bisphosphate carboxylase/oxygenase activity serves to maintain the redox balance of the cell. J. Bacteriol. 175: 3372–3379

    Google Scholar 

  • Wang X, Modak HV & Tabita FR (1993b) Photolithoautotrophic growth and control of CO2 fixation inRhodobacter sphaeroides andRhodospirillum rubrum in the absence of Ribulosebisphosphate carboxylase-oxygenase. J. Bacteriol. 175: 7109–7114

    Google Scholar 

  • Ward JA, Hunter CN & Jones OTG (1983) Changes in the cytochrome composition ofRhodopseudomonas sphaeroides grown aerobically, photosynthetically and on dimethylsulphoxide. Biochem. J. 212: 783–790

    Google Scholar 

  • Wellington CL, Bauer CE & Beatty JT (1992) Superoperons in purple non-sulfur bacteria: the tip of the iceberg? Can. J. Microbiol. 38: 20–27

    Google Scholar 

  • Widdel F, Schnell S, Heising S, Ehrenreich A, Assmus B & Schink B (1993) Ferrous iron oxidation by anoxygenic phototrophic bacteria. Nature 362: 834–836

    Google Scholar 

  • Windhovel U & Bowien B (1991) Identification ofcfxR, an activator gene of autotrophic CO2 fixation inAlcaligenes eutrophus. Mol. Microbiol. 5: 2695–2705

    Google Scholar 

  • Wood PM (1988) Chemolithotrophy. In: Anthony C (Ed) Bacterial Energy Transduction (pp 183–230) Academic Press, London

    Google Scholar 

  • Wooton JC, Nicholson RE, Cock JM, Walters DE, Burke JF, Doyle WA & Bray RC (1991) Enzymes depending on pterin molybdenum cofactor: sequence families, spectroscopic properties of molybdenum and possible cofactor binding domains. Biochim. Biophys. Acta 1057: 157–185

    Google Scholar 

  • Wu YQ, MacGregor BJ, Donohue TJ, Kaplan S & Yen B (1991) Genetic and physical mapping of theRhodobacter sphaeroides photosynthetic gene cluster from R-prime pWS2. Plasmid 25: 163–176

    Google Scholar 

  • Yen HC & Marrs BL (1977) Growth ofRhodopseudomonas capsulatus under dark anaerobic conditions with dimethylsulphoxide. Arch. Biochem. Biophys. 181: 411

    Google Scholar 

  • Yokota S, Urata K & Satoh T (1984) Redox properties of membrane-bound b-type cytochromes and a soluble c-type cytochrome of nitrate reductase in a photodenitrifier,Rhodopseudomonas sphaeroides f. sp.denitrificans. J. Biochem. 95: 1535–1541

    Google Scholar 

  • Youvan DC & Ismail S (1985) Light harvesting II (B800–850 complex) structural genes fromRhodopseudomonas capsulata. Proc. Natl. Acad. Sci. USA 82: 58–62

    Google Scholar 

  • Zeyer J, Eicher P, Wakeham SG & Schwarzenbach RP (1987) Oxidation of dimethylsulfide to dimethyl sulfoxide by phototrophic purple bacteria. Appl. Env. Microbiol. 53: 2026–2032

    Google Scholar 

  • Zsebo KKM & Hearst JE (1984) Genetic-physical mapping of a photosynthetic gene cluster fromRhodopseudomonas capsulata. Cell 37: 937–947

    Google Scholar 

  • Zuber H (1986) Structure of light harvesting antenna complexes of photosynthetic bacteria, cyanobacteria and red algae. Trends Biochem. Sci. 11: 414–419

    Google Scholar 

  • Zumft WG (1993) The biological role of nitric oxide in bacteria. Arch. Microbiol. 160: 253–264

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McEwan, A.G. Photosynthetic electron transport and anaerobic metabolism in purple non-sulfur phototrophic bacteria. Antonie van Leeuwenhoek 66, 151–164 (1994). https://doi.org/10.1007/BF00871637

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00871637

Key words

Navigation