Skip to main content
Log in

Nitrate reductases inEscherichia coli

  • Research Articles
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Escherichia coli expresses two different membrane-bound respiratory nitrate reductases, nitrate reductase A (NRA) and nitrate reductase Z (NRZ). In this review, we compare the genetic control, biochemical properties and regulation of these two closely related enzyme systems. The two enzymes are encoded by distinct operons located within two different loci on theE. coli chromosome. ThenarGHJI operon, encoding nitrate reductaseA, is located in thechlC locus at 27 minutes, along with several functionally related genes:narK, encoding a nitrate/nitrite antiporter, and thenarXL operon, encoding a nitrate-activated, two component regulatory system. ThenarZYWV operon, encoding nitrate reductase Z, is located in thechlZ locus located at 32.5 minutes, a region which includes anarK homologue,narU, but no apparent homologue to thenarXL operon. The two membrane-bound enzymes have similar structures and biochemical properties and are capable of reducing nitrate using normal physiological substrates. The homology of the amino acid sequences of the peptides encoded by the two operons is extremely high but the intergenic regions share no related sequences. The expression of both thenarGHJI operon and thenarK gene are positively regulated by two transacting factors Fnr and NarL-Phosphate, activated respectively by anaerobiosis and nitrate, while thenarZYWV operon and thenarU gene are constitutively expressed. Nitrate reductase A, which accounts for 98% of the nitrate reductase activity when fully induced, is clearly the major respiratory nitrate reductase inE. coli while the physiological role of the constitutively expressed nitrate reductase Z remains to be defined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

NR:

nitrate reductase

References

  • Augier V, Guigliarelli B, Asso M, Bertrand P, Frieson C, Giordano G, Chippaux M & Blasco F (1993) Site-directed mutagenesis of conserved cysteine residues within the β subunit ofEscherichia coli nitrate reductase. Biochemistry 32: 2013–2023

    Google Scholar 

  • Bachmann BJ (1990) Linkage map ofEscherichia coli K12, edition 8 Microbiol. Rev. 54: 130–197

    Google Scholar 

  • Barrett EL & Riggs DL (1982) Evidence for a second nitrate reductase activity that is distinct from the respiratory enzyme inSalmonella typhimurium. J. Bacteriol. 150: 563–571

    Google Scholar 

  • Bell LC, Richardson DJ & Ferguson SJ (1990) Periplasmic and membrane-bound respiratory nitrate reductases inThiosphaera pantotropha. FEBS Lett 265: 85–87

    Google Scholar 

  • Blasco F, Iobbi C, Giordano G, Chippaux M & Bonnefoy V (1989) Nitrate reductase ofEscherichia coli: completion of the nucleotide sequence of thenar operon and reassessment of the role of the α and β subunits in iron binding and electron transfer. Mol. Gen. Genet. 218: 249–256

    Google Scholar 

  • Blasco F, Iobbi C, Ratouchniak J, Bonnefoy V & Chippaux M (1990) Nitrate reductases ofEscherichia coli: sequence of the second nitrate reductase and comparison with that encoded by thenarGHJI operon. Mol. Gen. Genet. 222: 104–111

    Google Scholar 

  • Blasco F, Nunzi F, Pommier J, Brasseur R, Chippaux M & Giordano G (1992a) Formation of active heterologous nitrate reductases between nitrate reductases A and Z ofEscherichia coli. Mol. Microbiol. 6: 209–219

    Google Scholar 

  • Blasco F, Pommier J, Augier V, Chippaux M & Giordano G (1992b) Involvement of thenarJ ornarW gene product in the formation of active nitrate reductase inEscherichia coli. Mol. Microbiol. 6: 221–230

    Google Scholar 

  • Bonnefoy V, Burini JF, Giordano G, Pascal MC & Chippaux M (1987) Presence in the ‘silent’ terminus region of theEscherichia coli K12 chromosome of cryptic gene(s) encoding a new nitrate reductase. Mol. Microbiol. 1: 143–150

    Google Scholar 

  • Bonnefoy V & DeMoss JA (1992) Identification of functionalcis-acting sequences involved in regulation ofnarK gene expression inEscherichia coli. Mol. Microbiol. 6: 3595–3602

    Google Scholar 

  • Bonnefoy V, Pascal MC, Ratouchniak J & Chippaux M (1986) Alteration by mutation of the control by oxygen of thenar operon inEscherichia coli. Mol. Gen. Genet. 205: 349–352

    Google Scholar 

  • Buck M, Miller S, Drummond M & Dixon R (1986) Upstream activator sequences are present in the promoter of nitrogen fixation genes. Nature 320: 374–378

    Google Scholar 

  • Busby S, Spassky A & Chan B (1987) RNA polymerase makes important contacts upstream from base pair −49 at theEscherichia coli galactose operonP1 promoter. Gene 53: 145–152

    Google Scholar 

  • Byrne MD & Nicholas DJD (1987) A membrane-bound dissimilatory nitrate reductase fromRhodobacter sphaeroides f. sp.denitrificans. Biochim. Biophys. Acta 915: 120–124

    Google Scholar 

  • Cali BM, Micca JL and Stewart V (1989) Genetic regulation of nitrate assimilation inKlebsiella pneumoniae M5al. J. Bacteriol. 171: 2666–2672

    Google Scholar 

  • Carlson CA, Ferguson LP & Ingraham JI (1982) Properties of dissimilatory nitrate reductase purified from the denitrifierPseudomonas aeruginosa. J. Bacteriol. 151: 162–171

    Google Scholar 

  • Chan B, Spassky A & Busby S (1990) The organization of open complexes betweenEscherichia coli RNA polymerase and DNA fragments carrying promoters either with or without −35 region sequences. Biochem. J. 270: 141–148

    Google Scholar 

  • Chaudhry G & MacGregor C (1983)Escherichia coli nitrate reductase subunit A: its role as the catalytic site and evidence for its modification. J. Bacteriol. 154: 387–394

    Google Scholar 

  • Chippaux M, Bonnefoy-Orth V, Ratouchniak & Pascal MC (1981) Operon fusions in the nitrate reductase operon and study of the control genenirR inEscherichia coli. Mol. Gen. Genet. 182: 477–479.

    Google Scholar 

  • Craske A & Ferguson SJ (1986) The respiratory nitrate reductase fromParacoccus denitrificans. Molecular characterisation and kinetic properties. Eur. J. Biochem. 158: 429–436.

    Google Scholar 

  • DeMoss JA. & Hsu PY (1991) NarK enhances nitrate uptake and nitrite excretion inEscherichia coli. J. Bacteriol. 173: 3303–3310

    Google Scholar 

  • Dong XR, Li SF & DeMoss JA (1992) Upstream sequence elements required for NarL-mediated activation of transcription from thenarGHJI promoter ofEscherichia coli. J. Biol. Chem. 267: 14122–14128

    Google Scholar 

  • Dubourdieu M & DeMoss J (1992) ThenarJ gene product is required for biogenesis of respiratory nitrate reductase inEscherichia coli. J. Bacteriol. 174: 867–872

    Google Scholar 

  • Egan SE & Stewart V (1990) Nitrate regulation of anaerobic respiratory gene expression innarX deletion mutants ofEscherichia coli K12. J. Bacteriol. 172: 5020–5029

    Google Scholar 

  • Enoch H & Lester R (1975) The purification and properties of formate dehydrogenase and nitrate reductase fromEscherichia coli. J. Biol. Chem. 250: 6693–6705

    Google Scholar 

  • Esposti MD (1989) Prediction and comparison of the haem-binding sites in membrane haemoproteins. Biochim. Biophys. Acta 977: 249–265

    Google Scholar 

  • Fimmel AL & Haddock BA (1979) Use ofchlC-lac fusions to determine regulation of genechlC inEscherichia coli K12. J. Bacteriol. 138: 726–730

    Google Scholar 

  • Freundlich M, Ramani N, Mathew E, Sirko A & Tsui P (1992) The role of integration host factor in gene expression inEscherichia coli. Mol. Microbiol. 6: 2557–2563

    Google Scholar 

  • Garland P, Downie J & Haddock B (1975) Proton translocation and the respiratory nitrate reductase ofEscherichia coli. Biochem. J. 152: 547–559

    Google Scholar 

  • Gilson E, Clement JM, Brutlag D & Hofnung M (1984) A family of dispersed repetitive extragenic palindromic DNA sequences inE. coli. EMBO J. 3: 1417–1421.

    Google Scholar 

  • Guest JR (1992) Oxygen-regulated gene expression inEscherichia coli. J. Gen. Microbiol. 138: 2253–2263

    Google Scholar 

  • Hill TM (1992) Arrest of bacterial DNA replication. Ann. Rev. Microbiol. 46: 603–633

    Google Scholar 

  • Hulton CSJ, Higgins CF & Sharp PM (1991) ERIC sequences: a novel family of repetitive elements in the genomes ofEscherichia coli, Salmonella typhimurium and other enterobacteria. Mol. Microbiol. 5: 825–834

    Google Scholar 

  • Iobbi C, Santini CL, Bonnefoy V & Giordano G (1987) Biochemical and immunological evidence for a second nitrate reductase inEscherichia coli K12. Eur. J. Biochem. 168: 451–459

    Google Scholar 

  • Iobbi-Nivol C, Santini C, Blasco F & Giordano G (1990) Purification and further characterization of the second nitrate reductase ofEscherichia coli K-12. Eur. J. Biochem. 188: 679–687

    Google Scholar 

  • Jeter RM, Sias SR & Ingraham JL (1984) Chromosomal location and function of genes affectingPseudomonas aeruginosa nitrate assimilation. J. Bacteriol. 157: 673–677

    Google Scholar 

  • Johnson M, Bennett D, Morningstar J, Adams M & Mortenson L (1985) The iron-sulfur cluster composition ofEscherichia coli nitrate reductase. J. Biol. Chem. 260: 5456–5463

    Google Scholar 

  • Kohara Y, Akiyama K & Isono K (1987) The physical map of the wholeE. coli chromosome: application of a new strategy for rapid analysis and sorting of a large genomic library. Cell 50: 495–508

    Google Scholar 

  • Kolesnikow T, Schröder I & Gunsalus RP (1992) Regulation ofnarK gene expression inEscherichia coli in response to anaerobiosis, nitrate, iron and molybdenum. J. Bacteriol. 174: 7104–7111

    Google Scholar 

  • Lazazzera BA, Bates DM & Kiley PJ (1993) The activity of theEscherichia coli transcription factor Fnr is regulated by a change in oligomeric state. Genes & Development 7: 1993–2005

    Google Scholar 

  • Li SF & DeMoss JA (1987) Promoter region of thenar operon ofEscherichia coli: nucleotide sequence and transcription initiation signals. J. Bacteriol. 169: 4614–4620

    Google Scholar 

  • Lin JT, Goldman BS & Stewart V (1993) Structures of genesnasA andnasB, encoding assimilatory nitrate and nitrite reductases inKlebsiella pneumoniae M5al. J. Bacteriol. 175: 2370–2378

    Google Scholar 

  • Lombardo MJ, Bagga D & Miller CG (1991) Mutations inrpoA affect expression of anaerobically regulated genes inSalmonella typhimurium. J. Bacteriol. 173: 7511–7518

    Google Scholar 

  • Lund K & DeMoss J (1976) Association-dissociation behavior and subunit structure of heat-released nitrate reductase fromEscherichia coli. J. Biol. Chem. 251: 2207–2216

    Google Scholar 

  • McEwan AG, Jackson JB & Ferguson SJ (1984) Rationalization of properties of nitrate reductases inRhodopseudomonas capsulata. Arch. Microbiol. 137: 344–349

    Google Scholar 

  • McEwan AG, Wetzstein HG, Meyer O, Jackson JB & Ferguson SJ (1987) The periplasmic nitrate reductase ofRhodobacter capsulatus; purification, characterisation and distinction from a single reductase for trimethylamine-N-oxide, dimethylsulphoxide and chlorate. Arch. Microbiol. 147: 340–345

    Google Scholar 

  • McGregor C (1975) Anaerobic cytochromeb 1 inEscherichia coli: association with and regulation of nitrate reductase. J. Bacteriol. 121: 1111–1116

    Google Scholar 

  • McGregor C, Schnaitman C, Normansell D & Hodgins M (1974) Purification and properties of nitrate reductase fromEscherichia coli K-12. J. Biol. Chem. 249: 5321–5327

    Google Scholar 

  • Michalski WP & Nicholas DJD (1984) The adaptation ofRhodopseudomonas sphaeroides f. sp.denitrificans for growth under denitrifying conditions. J. Gen. Microbiol. 130: 155–165

    Google Scholar 

  • Morpeth FF & Boxer DH (1985) Kinetic analysis of respiratory nitrate reductase fromEscherichia coli K12. Biochemistry 24: 40–46

    Google Scholar 

  • Nohno TS, Noji S, Taniguchi S & Saito T (1989) ThenarX and thenarL genes encoding the nitrate-sensing regulators ofEscherichia coli are homologous to a family of prokaryotic two-component regulatory genes. Nucleic Acids Res. 17: 2947–2957

    Google Scholar 

  • Noji S, Nohno T, Saito T & Taniguchi S (1989) ThenarK gene product participates in nitrate transport induced inEscherichia coli nitrate-respiring cells. FEBS Lett. 252: 139–143

    Google Scholar 

  • Pichinoty F (1966) Propriétés, régulation & fonctions physiologiques des nitrates réductases bactériennes A & B. Bull. Soc. Fr. Physiol. Veg. 12: 97–106

    Google Scholar 

  • Rabin RS, Collins LA & Stewart V (1992)In vivo requirement of integration host factor fornar (nitrate reductase) operon expression inEscherichia coli K12. Proc. Natl. Acad. Sci. USA 89: 8701–8705

    Google Scholar 

  • Rabin RS & Stewart V (1993) Dual response (NarL and NarP) interact with dual sensors (NarX and NarQ) to control nitrate-and nitrite-regulated gene expression inEscherichia coli K12. J. Bacteriol. 175: 3259–3268.

    Google Scholar 

  • Richarson DJ & Ferguson SJ (1992) The influence of carbon substrate on the activity of the periplasmic nitrate reductase in aerobically grownThiosphaera pantotropha. Arch. Microbiol. 157: 535–537

    Google Scholar 

  • Richardson DJ, McEwan AG, Page MD, Jackson JB & Ferguson SJ (1990) The identification of cytochromes involved in the transfer of electrons to the periplasmic NO3 reductase ofRhodobacter capsulatus and resolution of a soluble NO3 -reductase-cytochrome-c 552 redox complex. Eur. J. Biochem. 194: 263–270

    Google Scholar 

  • Robertson LA & Kuenen JG (1984) Aerobic denitrification: a controversy revived. Arch. Microbiol. 139: 351–354

    Google Scholar 

  • Sabaty M (1993) Régulation de la dénitrification chezRhodobacter sphaeroides f. sp.denitrificans: synthèse protéique & transfert d'électrons. Thèse d'université. Biologie cellulaire & microbiologie. Aix-Marseille II

  • Sabaty M, Gagnon J & Vermeglio A (1994) Induction by nitrate and nitrous oxide of cytoplasmic and periplasmic proteins in the photodenitrifierRhodobacter sphaeroides forma sp.denitrificans in anaerobic or aerobic conditions. Eur. J. Biochem. in press

  • Sawada E & Satoh T (1980) Periplasmic location of dissimilatory nitrate and nitrite reductase in a denitrifying phototrophic bacterium,Rhodobacter sphaeroides forma sp.denitrificans. Plant Cell Physiol. 21: 205–210

    Google Scholar 

  • Schröder I, Darie S & Gunsalus RP (1993) Activation of theEscherichia coli nitrate reductase (narGHJI) operon by NarL and Fnr requires integration host factor. J. Biol. Chem. 268: 771–774

    Google Scholar 

  • Sears HJ, Ferguson SJ, Richardson DJ & Spiro S (1993) The identification of a periplasmic nitrate reductase inParacoccus denitrificans. FEMS Microbiol. Lett. 113: 107–112

    Google Scholar 

  • Showe MK & DeMoss JA (1968) Localization and regulation of synthesis of nitrate reductase inEscherichia coli. J. Bacteriol. 95: 1305–1313

    Google Scholar 

  • Sias SR, Stouthamer AH & Ingraham (1980) The assimilatory and dissimilatory nitrate reductases ofPseudomonas aeruginosa are encoded by different genes. J. Gen. Microbiol. 118: 229–234

    Google Scholar 

  • Siddiqui RA, Warnecke U, Hengsberger A, Schneider B, Kostka S & Friedrich B (1993) Structure and function of a periplasmic nitrate reductase inAlcaligenes eutrophus H16. J. Bacteriol. 175: 5867–5876

    Google Scholar 

  • Sodergren E & DeMoss J (1988)narI region of theEscherichia coli nitrate reductase (nar) operon cotains two genes. J. Bacteriol.170: 1721–1729

    Google Scholar 

  • Sodergren EJ, Hsu PY & DeMoss JA (1988) Roles of thenarJ andnarI gene products in the expression of nitrate reductase inEscherichia coli. J. Biol. Chem. 263: 16156–16162

    Google Scholar 

  • Stern MJ, Ferro-Luzzi Ames G, Smith NH, Robinson EC & Higgins CF (1984) Repetitive extragenic palindromic sequences: a major component of the bacterial genome. Cell 37: 1015–1026

    Google Scholar 

  • Stewart V (1982) Requirement of Fnr and NarL functions for nitrate reductase expression inEscherichia coli K-12. J. Bacteriol. 151: 1320–1325

    Google Scholar 

  • Stewart V (1988) Nitrate respiration in relation to facultative metabolism in Enterobacteria. Microbiol. Rev. 52: 190–232

    Google Scholar 

  • Stewart V. (1993) Nitrate regulation of anaerobic respiratory gene expression inEscherichia coli. Mol. Microbiol. 9: 425–434

    Google Scholar 

  • Stewart V & Parales J Jr (1988) Identification and expression of genesnarL andnarX of thenar (nitrate reductase) locus in Escherichia coli K-12. J. Bacteriol. 170: 1589–1597

    Google Scholar 

  • Walker S & DeMoss JA (1991) Promoter sequence requirements for Fnr-dependent activation of transcription of thenarGHJI operon. Mol. Microbiol. 5: 353–360

    Google Scholar 

  • Walker S & DeMoss JA (1992) Role of alternative promoter elements in transcription from thenar promoter ofEscherichia coli. J. Bacteriol. 174: 1119–1123

    Google Scholar 

  • Walker S & DeMoss JA (1993) Phosphorylation and dephosphorylation catalysedin vitro by purified components of the nitrate sensing system, NarX and NarL. J. Biol. Chem. 268: 8391–8393

    Google Scholar 

  • Warnecke-Eberz U & Friedrich B (1993) Three nitrate reductase activities inAlcaligenes eutrophus. Arch. Microbiol. 159: 405–409

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

On leave from Department of Biochemistry and Molecular Biology, The University of Texas Medical school at Houston, Houston, Texas, 77225, USA

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonnefoy, V., Demoss, J.A. Nitrate reductases inEscherichia coli . Antonie van Leeuwenhoek 66, 47–56 (1994). https://doi.org/10.1007/BF00871632

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00871632

Key words

Navigation