Skip to main content
Log in

Do circulating factors play a role in the pathogenesis of minimal change nephrotic syndrome?

  • Invited Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

This review examines the studies which have been undertaken to test the hypothesis that minimal change nephrotic syndrome of childhood (MCNS) is a primary immune disorder and that there is altered T-cell function which results in release of a circulating factor. This factor alters glomerular permeability, perhaps by modifying charge sites in the glomerular capillary bed, and results in selective proteinuria. The abnormalities in immune function observed in MCNS are summarized, as are the studies of circulating factors which have been identified. Although some agents have been shown to alter capillary permeability, the unequivocal demonstration of such a factor causing selective proteinuria in vivo, either directly or indirectly, is lacking. The question is raised whether intrarenal release or activation of mediators of altered permeability, rather than the systemic release of such factors, may be important in the pathogenesis of MCNS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Munk F (1913) Klinische Diagnostik der degenerativen Nierenerkrankungen. Z Klin Med 78:1

    Google Scholar 

  2. Schnaper HW, Robson AM (1987) Nephrotic syndrome, minimal change disease, focal glomerulosclerosis and related disorders. In: Schrier RW, Gottschalk CM (eds) Disease of the kidney. Little, Brown & Co, Boston, pp 1949–2005

    Google Scholar 

  3. Cameron JS, Turner DR, Ogg CS, Sharpstone P, Brown CB (1974) The nephrotic syndrome in adults with minimal change glomerular lesions. Q J Med 43:461

    PubMed  Google Scholar 

  4. Fydryk J, Waldherr R, Mall G, Schärer K (1982) Mesangial alterations in steroid responsive minimal change nephrotic syndrome. Virchows Arch [A] 397:193–202

    Google Scholar 

  5. Cavallo T, Johnson MP (1981) Immunopathologic study of minimal change of glomerular disease with mesangial IgM deposits. Nephron 27:281–284

    PubMed  Google Scholar 

  6. Vehaskari VM, Robson AM (1981) The nephrotic syndrome in children. Ann Pediatr 10:42

    Google Scholar 

  7. Farquhar MG, Vernier RL, Good RA (1957) An electron microscope study of the glomerulus in nephrosis, glomerulonephritis, and lupus erythematosus J Exp Med 106: 649–660

    PubMed  Google Scholar 

  8. Hoffmann EO (1982) The detection of effaced podocytes by high resolution light microscopy. Am J Clin Pathol 78:508–510

    PubMed  Google Scholar 

  9. Bridges CR, Myers BD, Brenner BM, Deen WM (1982) Glomerular charge alterations in human minimal change nephropathy. Kidney Int 22:677–684

    PubMed  Google Scholar 

  10. Weening JJ, Rennke HG (1983) Glomerular permeability and polyanion in adriamycin nephrosis in the rat. Kidney Int 24:152–159

    PubMed  Google Scholar 

  11. Bakker WW, Vos JTWM, Scholma J, Hoedemaeker PhJ (1982) The glomerular polyanion (GPA) of the rat kidney. II. GPA loss in vitro by a vasoactive serum fraction. Br J Exp Pathol 63:531–538

    PubMed  Google Scholar 

  12. Shaloub RJ (1974) Pathogenesis of lipoid nephrosis: a disorder of T-cell function. Lancet II: 556–559

    Google Scholar 

  13. Rennke HG, Venkatachalam MH (1979) Glomerular permeability of macromolecules. Effect of molecular configuration on the fractional clearance of uncharged dextran and neutral horseradish peroxidase in the rat. J Clin Invest 63:713–717

    PubMed  Google Scholar 

  14. Bohrer MP, Baylis C, Humes HD, Glassock RJ, Robertson CR, Brenner BM (1978) Permselectivity of the glomerular capillary wall. Facilitated filtration of circulating polycations. J Clin Invest 61:72–78

    PubMed  Google Scholar 

  15. Caulfield JP, Farquhar MG (1974) The permeability of glomerular capillaries to graded dextrans. Identification of the basement membranes as the primary filtration barrier. J Cell Biol 63:883–903

    PubMed  Google Scholar 

  16. Kanwar YS, Linker A, Farquhar MG (1980) Increased permeability of the glomerular basement membrane to ferritin after removal of glycosaminoglycans (heparan sulphate) enzyme digestion. J Cell Biol 86:688–693

    PubMed  Google Scholar 

  17. Robson AM, Giangiacomo J, Kienstra RA, Naqvi ST, Ingelfinger JR (1974) Normal glomerular permeability and modification by minimal change nephrotic syndrome. J Clin Invest 54:1190–1199

    PubMed  Google Scholar 

  18. Robson AM, Cole BR (1983) Pathologic and functional correlations in the glomerulopathies. In: Cummings NB, Michael AF, Wilson CB (eds) Immune mechanisms in renal disease. Plenum Press, New York, pp 109–127

    Google Scholar 

  19. Roy LP, Vernier RL, Michael AF (1972) Effect of proteinload proteinuria on glomerular polyanion. Proc Soc Exp Biol Med 141:870–874

    PubMed  Google Scholar 

  20. Blau EB, Haas JE (1973) Glomerular sialic acid and proteinuria in human renal disease. Lab Invest 38:477–481

    Google Scholar 

  21. Mallick NP (1977) The pathogenesis of minimal change nephropathy. Clin Nephrol 7:87–95

    PubMed  Google Scholar 

  22. Taube D, Williams DG (1988) Pathogenesis of minimal change nephropathy. In: Cameron JS, Glassock RJ (eds) The nephrotic syndrome. Dekker, New York Basel, pp 193–218

    Google Scholar 

  23. Joffe MJ, Robson AR (1978) Dissociation of lymphokine production and blastogenesis in children with measles infection. Clin Immunol Immunopathol 10:335–343

    PubMed  Google Scholar 

  24. Tapie J, Laporte J, Richalens J (1957) Syndrome nephrotique au cours de la maladie de Hodgkin-Sternberg. Presse Med 65:287–289

    PubMed  Google Scholar 

  25. Sherman RL, Susin M, Weksla ME, Becker EL (1972) Lipoid nephrosis in Hodgkin's disease. Am J Med 52:699–706

    PubMed  Google Scholar 

  26. Plager J, Stutzman L (1971) Acute nephrotic syndrome as a manifestation of active Hodgkin's disease. Am J Med 50:56–66

    PubMed  Google Scholar 

  27. Belghiti D, Vernant J, Hibec G, Gubler M, Andre C, Sobel A (1981) Nephrotic syndrome associated with T cell lymphoma. Cancer 47:1878–1882

    PubMed  Google Scholar 

  28. Tomizawa S, Maruyama K, Nagasawa N, Suzuki S, Kuroume T (1985) Studies of vascular permeability factor derived from T lymphocytes and inhibitory effect of plasma on its production in minimal change nephrotic syndrome. Nephron 41:157–160

    PubMed  Google Scholar 

  29. Ovary Z (1951) A new method for the quantitative determination of anaphylactic antibody in sera of guinea pigs and rabbits. Proc Int Congr Allergy 156:315–320

    Google Scholar 

  30. Bakker WW, Roskam G, Hardonk MJ, Vos JTWM, Bleumink E (1985) The glomerular polyanion (GPA) of the rat kidney. III. Further characterization of a vasoactive serum factor which reduces GPA. Br J Exp Pathol 66:47–55

    PubMed  Google Scholar 

  31. Bakker WW, Baller JFW, Luijk WHJ van (1988) Increased vasoactivity and enhanced turnover of a kallikrein-like molecule in plasma from subjects with minimal change disease in relapse versus remission. Contrib Nephrol 67:31–36

    PubMed  Google Scholar 

  32. Beale MG, Hoffsten PE, Robson AM, MacDermot RP (1980) Inhibitory factors of lymphocyte transformation in sera from patients with minimal change nephrotic syndrome. Clin Nephrol 13:271–276

    PubMed  Google Scholar 

  33. Boulton Jones JM, Tulloch J, Dore B, McKay A (1983) Changes in the glomerular capillary wall induced by lymphocyte products and serum of nephrotic patients. Clin Nephrol 20:72–76

    PubMed  Google Scholar 

  34. Robson AM, Vehaskari VM (1984) The role of charge sites in vascular permeability. In: Brodehl J, Ehrich JHH (eds) Paediatric nephrology. Springer, Berlin Heidelberg New York, pp 268–271

    Google Scholar 

  35. Bakker WW, Laan SM van der, Vos JTWM, Hoedemaeker PJ (1982) The glomerular polyanion (GPA) of the rat kidney. I. Concanavalin A activated cells affect the glomerular polyanion in vitro. Nephron 31:68–74

    PubMed  Google Scholar 

  36. Shaloub RJ, Jefferson MB, Rollins EL, Williams VL, Antoniou LD (1981) Effect of intrarenal perfusion of lymphokine on glomerular histology in the rat. Kidney Int 19:191

    Google Scholar 

  37. Wilkinson A, Williams DG, Gillespie C, Hartley B (1986) Nephrotic plasma increases proteinuria and reduces anionic sites on the glomerular basement membrane in vivo in NZW rabbits. Kidney Int 29:295

    Google Scholar 

  38. Zimmerman SW (1984) Increased urinary protein excretion in the rat produced by serum from a patient with recurrent focal glomerular sclerosis after renal transplantation. Clin Nephrol 22:32–38

    PubMed  Google Scholar 

  39. Lagrue G, Xheneumont S, Branellec A, Weil B (1975) Lymphokines and nephrotic syndrome. Lancet I: 271–272

    Google Scholar 

  40. Yoshizawa N, Kusumi Y, Matsumoto K, Oshima S, Takeuchi A, Kawamura O, Kubota T, Kondo S, Niwa H (1989) Studies of a glomerular permeability factor in patients with minimal change nephrotic syndrome. Nephron 51:370–376

    PubMed  Google Scholar 

  41. Mallick NP, Williams RJ, McFarlane H, Orr WM, Taylor G, Williams G (1972) Cell mediated immunity in nephrotic syndrome. Lancet I: 507–509

    Google Scholar 

  42. Eyres KE, Mallick NP, Taylor G (1976) Evidence for cell mediated immunity to renal antigens in minimal change nephrotic syndrome. Lancet I:1158–1160

    Google Scholar 

  43. Ooi BS, Orlina AR, Masaitis L (1974) Lymphocytotoxins in primary renal disease. Lancet II:1348–1350

    Google Scholar 

  44. Garin EH, Boggs KP (1986) Effect of concanavalin A on nephrotic peripheral blood mononuclear cells mediated increased sulphate uptake in rat glomerular basement membrane. Pediatr Res 20:321–323

    PubMed  Google Scholar 

  45. Bakker WW, Luijk WHJ van, Hené RJ, Desmit EM, Hem GK van der, Vos JTWM (1986) Loss of glomerular polyanion in vitro induced by mononuclear blood cells from patients with minimal change nephrotic syndrome. Am J Nephrol 6:107–111

    PubMed  Google Scholar 

  46. Bakker WW, Baller JFW, Luijk WHJ van, Hem GK van der (1986) Mononuclear blood cells from patients with minimal change nephrotic syndrome (MCNS) induce increased glomerular permeability in the rat kidney in vivo. Kidney Int 30:633

    Google Scholar 

  47. Lagrue G, Xheneumont S, Branellec A, Hirbec G, Weil B (1975) A vascular permeability factor elaborated from lymphocytes. Demonstration in patients with nephrotic syndrome. Biomedicine 23:37–49

    PubMed  Google Scholar 

  48. Lagrue G, Branellec A, Blanc C, Xheneumont S, Beaudoux F, Sobel A, Weil B (1975) A vascular permeability factor in lymphocyte culture supernatants from patients with nephrotic syndrome; II pharmacological and physiochemical properties. Biomedicine 23:73–76

    PubMed  Google Scholar 

  49. Sobel AT, Lagrue G (1980) Role of a vascular permeability increasing factor released by lymphocytes in renal pathology. In: Pick E (ed) Lymphokine reports, vol 1. Academic Press, New York, pp 211–230

    Google Scholar 

  50. Sobel AT, Heslan JM Branellec A, Lagrue G (1984) Vascular permeability factor and other lymphokines in nephrotic syndrome. In: Brodehl J, Ehrich JHH (eds) Paediatric nephrology. Springer, Berlin Heidelberg New York, pp 264–267

    Google Scholar 

  51. Sobel AT, Branellec A, Blanc C, Lagrue G (1977) Physicochemical characterization of a vascular permeability factor produced by ConA stimulated human lymphocytes. J Immunol 119:1230–1234

    PubMed  Google Scholar 

  52. Bakker WW, Beukhof JR, Luijk WHJ van, Hem GK van der (1982) Vascular permeability increasing factor (VPF) in IgA nephropathy. Clin Nephrol 18:165–167

    PubMed  Google Scholar 

  53. Heslan JM, Branellec A, Laurent J, Lagrue G (1986) The vascular permeability factor is a T lymphocyte product. Nephron 42:187–188

    PubMed  Google Scholar 

  54. Schnaper HW, Aune TM (1985) Identification of the lymphokine soluble immune response suppressor in urine of nephrotic children. J Clin Invest 76:341–349

    PubMed  Google Scholar 

  55. Schnaper HW, Aune TM (1987) Steroid sensitive mechanism of soluble immune response suppressor production in steroid responsive nephrotic syndrome. J Clin Invest 79:257–264

    PubMed  Google Scholar 

  56. Schnaper HW, Pierce CW, Aune TM (1984) Identification and initial characterization of concanavalin A and interferon-induced human suppressor factors; evidence for a human equivalent of murine soluble immune response suppressor (SIRS). J Immunol 132:2429–2435

    PubMed  Google Scholar 

  57. Bendtzen K (1980) Evidence for the esterase and protease nature of human leukocyte migration inhibitory factor LIF and its modulation by cGMP. In: Pick E (ed) Lymphokine reports 1. Academic Press, New York, pp 41–62

    Google Scholar 

  58. Damle NK, Doyle LV, Dender JR, Bradley EC (1987) Interleukin-2 activated human lymphocytes exhibit enhanced adhesion to normal vascular endothelial cells and cause their lysis. J Immunol 138:1779–1785

    PubMed  Google Scholar 

  59. Kawaguchi H, Yamaguchi Y, Nagata M, Itoh K (1987) The effects of human recombinant interleukin-2 (hr Il-2) on the permeability of glomerular basement membranes in rats. Jpn J Nephrol 29:1–11

    Google Scholar 

  60. Heslan JM, Pirotsky E, Branellec AI, Lagrue G (1988) Recombinant interleukin-2 induced proteinuria into isolated perfused rat kidney. In: Gubler MC, Sternberg M (eds) Progress in basement membrane research. Renal and related aspects in health and disease. Libbey, London, pp 277–280

    Google Scholar 

  61. Lagrue G, Pech MA, Branellec AI, Heslan JM, Rostoker G, Senik A, Lang P (1988) Increased interleukin-2 levels in lymphocyte culture supernatants from patients with idiopathic nephrotic syndrome. In: Gubler MC, Sternberg M (eds) Progress in basement membrane research. Renal and related aspects in health and disease. Libbey, London, pp 281–284

    Google Scholar 

  62. Moorthy AV, Zimmerman SW, Burkholder PM (1976) Inhibition of lymphocyte blastogenesis by plasma of patients with minimal change nephrotic syndrome. Lancet I:1160–1162

    Google Scholar 

  63. Thomson NM, Kraft N (1987) Normal human serum contains the lymphotoxin found in minimal change nephropathy. Kidney Int 31:1186–1193

    PubMed  Google Scholar 

  64. Bakker WW, Donga J, Koudstaal J, Baller JFW (1987) Alteration of glomerular basement membrane (GBM) anionic sites of the rat kidney by a vasoactive kallikrein-like factor isolated from human plasma. In: Davison AM (ed). Xth International Congress on Nephrology, London. Alden Press, Oxford, p 372.

    Google Scholar 

  65. Hoyer JR, Mauer SM, Michael AF (1975) Unilateral renal disease in the rat. I. Clinical, morphologic and glomerular mesangial functional features of the experimental model produced by renal perfusion with aminonucleoside. J Lab Clin Med 85:756–768

    PubMed  Google Scholar 

  66. Vernier RL (1987) Primary (idiopathic) nephrotic syndrome. In: Holliday, Barratt TM, Vernier RL (eds) Pediatric nephrology. Williams and Wilkins, Baltimore, p 445

    Google Scholar 

  67. Saito H (1987) Contact factors in health and disease. Semin Thromb Hemost 13:36–49

    PubMed  Google Scholar 

  68. Anagnostu A, Fried W, Kurtzman NA (1981) Hematological consequence of renal failure. In: Brenner BM, Rector FC (eds) The kidney. Saunders, Philadelphia, pp 2184–2212

    Google Scholar 

  69. Panicucci F, Sagripanti A, Vispi M, Pinori E, Lecchini L, Barsotti G, Giovanetti S (1983) Comprehensive study of haemostasis in nephrotic syndrome. Nephron 33:9–13

    PubMed  Google Scholar 

  70. Vaziri ND, Ngo JCT, Ibsen KH, MahalwasK, Ray S, Hung EK (1982) Deficiency and urinary loss of factor XII in nephrotic syndrome. Nephron 32:342–346

    PubMed  Google Scholar 

  71. Coppola R, Guerra L, Ruggeri ZM, Tarantino A, Mannuci PM, Ponticelli C (1981) Factor VIII/van Willebrand factor in glomerular nephropathies. Clin Nephrol 16:217–222

    PubMed  Google Scholar 

  72. Alkjaersig N (1984) The coagulopathy of nephrotic syndrome. In: Brodehl J, Ehrich JHH (eds) Paediatric nephrology. Springer, Berlin Heidelberg New York, pp 272–275

    Google Scholar 

  73. Kallen RJ, Lee SK (1975) A study of the plasma kiningenerating system in children with the minimal lesion, idiopathic nephrotic syndrome. Pediatr Rev 9:705–709

    Google Scholar 

  74. Hruby MA, Honig GR, Shapira E (1980) Immunoquantitation of Hageman factor in urine and plasma of children with nephrotic syndrome. J Lab Clin Med 96:501–510

    PubMed  Google Scholar 

  75. Bakker WW, Baller JFW, Luijk WHJ van (1987) Activation of a vasoactive kallikrein-like factor in subjects with minimal change nephrotic syndrome. In: Davison AM (ed.) Xth International Congress on Nephrology, London. Alden Press, Oxford, p 372

    Google Scholar 

  76. Levin M, Smith C, Walters MDS, Gascoine P, Barratt TM (1985) Steroid responsive nephrotic syndrome, a generalized disorder of membrane negative charge. Lancet II:239–242

    Google Scholar 

  77. Boulton Jones JM, McWilliams G, Chandrachud L (1986) Variation in charge on red cells of patients with different glomerulopathies. Lancet II:186–189

    Google Scholar 

  78. Boulton Jones JM, Chandrachud L, Mosely H (1986) Inherited variations in glomerular handling of antigen between Lewis and DA rats. Clin Sci 71:565–572

    PubMed  Google Scholar 

  79. Hunsicker LG, Shearer TP, Shaffer SJ (1981) Acute reversible proteinuria induced by infusion of the polycation hexadimethrine. Kidney Int 20:7–17

    PubMed  Google Scholar 

  80. Vehaskari VM, Root ER, Germuth FG Jr, Robson AM (1982) Glomerular charge and urinary protein excretion: effects of systemic and intrarenal polycation infusion in the rat. Kidney Int 22:127–135

    PubMed  Google Scholar 

  81. Seiler MW, Rennke HG, Venkatachalam MA, Cotran RS (1977) Pathogenesis of polycation-induced alterations (“fusion”) of glomerular epithelium. Lab Invest 36:48–61

    PubMed  Google Scholar 

  82. Vehaskari VM, Chang CTC, Stevens JK, Robson AM (1984) The effects of polycations on vascular permeability in the rat. A proposed role for charge sites. J Clin Invest 73:1053–1061

    PubMed  Google Scholar 

  83. Camussi G, Tetta C, Coda R, Segoloni GP, Vercellone A (1984) Platelet-activating factor-induced loss of glomerular anionic charges. Kidney Int 25:73–81

    PubMed  Google Scholar 

  84. Bertani T, Livio M, Macconi D, Morigi M, Bisogno G, Patrono C, Remuzzi G (1987) Platelet activating factor (PAF) as a mediator of injury in nephrotoxic nephritis. Kidney Int 31:1248–1256

    PubMed  Google Scholar 

  85. Ghiggery GM, Candiano G, Ginevri F, Gusmano R, Ciardi MR, Perfumo F, Delfino G, Cuniberti C, Querido C (1987) Renal selectivity properties towards endogenous albumin in minimal change nephropathy. Kidney Int 32:67–77

    Google Scholar 

  86. Davin JC, Foidart JB, Mahieu PR (1983) Fc receptor function in minimal change nephrotic syndrome in childhood. Clin Nephrol 20:280

    PubMed  Google Scholar 

  87. Taube D, Brown Z, Williams DG (1981) Depression of normal lymphocyte transformation by sera of patients with minimal change nephropathy and other forms of nephrotic syndrome. Clin Nephrol 15:286–290

    PubMed  Google Scholar 

  88. Smith MD, Barratt TM, Hayward AR, Soothill JF (1975) The inhibition of complement dependent lymphocyte rosette formation by the sera of children with steroid-sensitive nephrotic syndrome and other renal diseases. Clin Exp Immunol 21:236–243

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bakker, W.W., van Luijk, W.H.J. Do circulating factors play a role in the pathogenesis of minimal change nephrotic syndrome?. Pediatr Nephrol 3, 341–349 (1989). https://doi.org/10.1007/BF00858545

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00858545

Key words

Navigation