Skip to main content
Log in

Stability of stochastic Leipholz column with stochastic loading

Stabilität eines Leipholz-Stabes mit stochastischen Eigenschaften und Belastungen

  • Originals
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Summary

The Leipholz column which is having the Young modulus and mass per unit length as stochastic processes and also the distributed tangential follower load behaving stochastically is considered. The non self-adjoint differential equation and boundary conditions are considered to have random field coefficients. The standard perturbation method is employed. The non self-adjoint operators are used within the regularity domain. Full covariance structure of the free vibration eigenvalues and critical loads is derived in terms of second order properties of input random fields characterizing the system parameter fluctuations. The mean value of critical load is calculated using the averaged problem and the corresponding eigenvalue statistics are sought. Through the frequency equation a transformation is done to yield load parameter statistics. A numerical study incorporating commonly observed correlation models is reported which illustrates the full potentials of the derived expressions.

Übersicht

Behandelt wird der Leipholz-Stab, dessen Elastizitätsmodul, Masseverteilung und tangential folgende Streckenlast stochastisch sind. Die nicht selbstadjungierte Differentialgleichung und die Randbedingungen werden als solche mit Zufallskoeffizienten betrachtet und die übliche Störungsmethode benutzt. Im Regularitätsbereich werden die nicht selbstadjungierten Operatoren benutzt. Hergeleitet wird die vollständige Kovarianz-Struktur der Eigenwerte der freien Schwingung und kritischen Lasten als Funktionen der Eigenschaften zweiter Ordnung der zufälligen Eingangsgrößen, die die Schwankungen der Systemparameter charakterisieren. Der Mittelwert der kritischen Last wird aus dem gemittelten Problem berechnet und die zugehörige Eigenwert-Statistik wird gesucht. Über die Frequenzgleichung wird eine Transformation vorgenommen, um die Statistik des Lastparameters zu erhalten. Eine numerische Studie illustriert die Leistungsfähigkeit der hergeleiteten Ausdrücke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Leipholz, H. H. E.: Stability of elastic systems. Alphen aan den Rijn: Sijthoff and Noordhoff 1980

    Google Scholar 

  2. Bolotin, V. V.: Nonconservative problems of the theory of elastic stability. Oxford: Pergamon Press 1963

    Google Scholar 

  3. Ziegler, H.: Priciples of structural stability, Waltham: Blaisdell 1968

    Google Scholar 

  4. Herrmann, G.: Stability of equilibrium of elastic systems subjected to nonconservative forces. Appl. Mech. Rev. 20 (1967) 103–108

    Google Scholar 

  5. Herrmann, G.; Bungay, R. W.: On the stability of elastic systems subjected to nonconservative forces. J. Appl. Mech. 31 (1964) 435–440

    Google Scholar 

  6. Leipholz, H. H. E.: Stability analysis of non-conservative systems via energy considerations. Mech. Today 5 (1980) 193–214

    Google Scholar 

  7. Attard, M. M.; Somervaille, I. J.: Stability of thin-walled open beams under nonconservative loads. Mech. Struct. Mach. 15 (1987) 385–412

    Google Scholar 

  8. Kounadis, A. N.: Stability of elastically restrained Timoshenko cantilevers with attached masses subjected to a follower force. J. Appl. Mech. 44 (1977) 731–736

    Google Scholar 

  9. Xiong, Y.; Wang, T. K.; Tabarrok, B.: A note on the solution of general nonconservative systems. Mech. Res. Comm. 16 (1989) 83–93

    Google Scholar 

  10. Leipholz, H. H. E.: On a stability theory of non-self-adjoint mechanical systems. Acta Mech., 14 (1972) 253–295

    Google Scholar 

  11. Pedersen, P.; Seyranian, A. P.: Sensitivity analysis for problems of dynamic stability. Int. J. Sol. Structures 19 (1983) 315–335

    Google Scholar 

  12. Vanmarcke, E.: Random fields: Analysis and Synthesis. Cambridge: MIT Press 1983

    Google Scholar 

  13. Shinozuka, M.; Lenoe, E.: A probabilistic model for spatial distribution of material properties. J. Eng. Fract. Mech. 8 (1976) 217–227

    Google Scholar 

  14. Hoshiya, M.; Shah, H. C.: Free vibration of a stochastic beam-column. J. Eng. Mech. 97 (1971) 1239–1255

    Google Scholar 

  15. Ishikawa, H.; Inomo, H.: Utsumi, A.; Ishikawa, H.; Kimurey, H.: Potential applicability of mathematical statistic in stochastic modeling of failure phenomena. In: Shinozuka, M.; Schueller, G. I. (eds.) Structural safety and reliability, pp. 1491–1498, New York: ASCE 1990

    Google Scholar 

  16. Tsubaki, T.; Bazant, Z. P.: Random shrinkage stresses in aging viscoelastic vessel. J. Eng. Mech. 108 (1982) 527–545

    Google Scholar 

  17. Zhu, W. Q.: Stochastic averaging methods in random vibration. Appl. Mech. Rev. 41 (1988) 189–199

    Google Scholar 

  18. Soong, T. T.; Cozzarelli, F. A.: Vibration of disordered structural systems. Shock Vibr. Digest 8 (1976) 21–35

    Google Scholar 

  19. Vom Scheidt, J.; Purkert, W.: Random eigenvalue problems. New York: Elsevier 1983

    Google Scholar 

  20. Ibrahim, R. A.: Structural dynamics with parameter uncertainties. Appl. Mech. Rev. 40 (1987) 309–328

    Google Scholar 

  21. Wedig, W.: Stochastic boundary and eigenvalue problems. In: Clarkson, B. L. (ed.) Stochastic problems in dynamics, pp. 54–56. London: Pitman 1977

    Google Scholar 

  22. Kozin, F.: Stability of flexible structures with random parameters. In: Ariaratnam, S. T.; Schueller, G. I.: Elishakoff, I;(eds.) Stochastic structural dynamics, pp. 173–180. New York: Elsevier 1988

    Google Scholar 

  23. Seide, P.: Snapthrough of initially buckled beams under uniform random pressure. In: Elishakoff, I; Lyon, R. H. (eds.) Random vibration-status and recent developments, pp. 403–414 New York: Elsevier 1986

    Google Scholar 

  24. Ariaratnam, S. T.; Sri Namachchivaya, N.: Dynamic stability of pipes conveying fluid with stochastic flow velocity. In: Elishakoff, I.; Lyon, R. H. (eds.) Random vibration-status and recent developments, pp. 1–17. New York: Elsevier 1986

    Google Scholar 

  25. Ariaratnam, S. T.; Xie, W. C.: Dynamic snap buckling of structures under stochastic loads. In: Ariaratnam, S. T.; Schueller, G. I.; Elishakoff, I. (eds.) Stochastic structural dynamics, pp. 1–20, New York: Elsevier 1988

    Google Scholar 

  26. Plaut, R. H.; Infante, E. F.: On the stability of some continuous systems subjected to random excitations. J. Appl. Mech. 37 (1970) 623–627

    Google Scholar 

  27. Collins, D.; Thomson, W. T.: The eigenvalue problem for structural systems with statistical properties. AIAA J. 7 (1969) 642–648

    Google Scholar 

  28. Shinozuka, M.; Astill, C. A.: Random eigenvalue problems in structural analysis. AIAA J. 10 (1972) 456–462

    Google Scholar 

  29. Leipholz, H.: On conservative systems of the first and second kind. Ing. Arch. 43 (1974) 255–271

    Google Scholar 

  30. Leipholz, H.: On the modal approach to the stability of certain non-self-adjoint problems in elasto-dynamics. Dyn. Stability Syst. 1 (1986) 43–58

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramu, S.A., Ganesan, R. Stability of stochastic Leipholz column with stochastic loading. Arch. Appl. Mech. 62, 363–375 (1992). https://doi.org/10.1007/BF00804597

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00804597

Keywords

Navigation