Article

Space Science Reviews

, Volume 71, Issue 1, pp 761-796

DARN/SuperDARN

A global view of the dynamics of high-latitude convection
  • R. A. GreenwaldAffiliated withApplied Physics Laboratory, The Johns Hopkins University
  • , K. B. BakerAffiliated withApplied Physics Laboratory, The Johns Hopkins University
  • , J. R. DudeneyAffiliated withBritish Antarctic Survey, Natural Environment Research Council
  • , M. PinnockAffiliated withBritish Antarctic Survey, Natural Environment Research Council
  • , T. B. JonesAffiliated withDepartment of Physics, Leicester University
  • , E. C. ThomasAffiliated withDepartment of Physics, Leicester University
  • , J. -P. VillainAffiliated withLaboratoire de Physique et Chimie de l'Environnement, Centre National de la Recherche Scientifique
  • , J. -C. CerisierAffiliated withCentre d'Etude des Environnement Terrestre et Planétaires, Centre National de la Recherche Scientifique
  • , C. SeniorAffiliated withCentre d'Etude des Environnement Terrestre et Planétaires, Centre National de la Recherche Scientifique
    • , C. HanuiseAffiliated withLaboratoire de Sondages Electromagnetiques de l'Environnement Terrestre, Centre National de la Recherche Scientifique
    • , R. D. HunsuckerAffiliated withGeophysical Institute, University of Alaska
    • , G. SofkoAffiliated withDepartment of Physics, University of Saskatchewan
    • , J. KoehlerAffiliated withDepartment of Physics, University of Saskatchewan
    • , E. NielsenAffiliated withMax Planck Institut für Aeronomy
    • , R. PellinenAffiliated withApplied Physics Laboratory, The Johns Hopkins UniversityFinnish Meteorlogical Institute
    • , A. D. M. WalkerAffiliated withApplied Physics Laboratory, The Johns Hopkins UniversityUniversity of Natal
    • , N. SatoAffiliated withApplied Physics Laboratory, The Johns Hopkins UniversityNational Institute of Polar Research
    • , H. YamagishiAffiliated withApplied Physics Laboratory, The Johns Hopkins UniversityNational Institute of Polar Research

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

The Dual Auroral Radar Network (DARN) is a global-scale network of HF and VHF radars capable of sensing backscatter from ionospheric irregularities in the E and F-regions of the high-latitude ionosphere. Currently, the network consists of the STARE VHF radar system in northern Scandinavia, a northern-hemisphere, longitudinal chain of HF radars that is funded to extend from Saskatoon, Canada to central Finland, and a southern-hemisphere chain that is funded to include Halley Station, SANAE and Syowa Station in Antarctica. When all of the HF radars have been completed they will operate in pairs with common viewing areas so that the Doppler information contained in the backscattered signals may be combined to yield maps of high-latitude plasma convection and the convection electric field. In this paper, the evolution of DARN and particularly the development of its SuperDARN HF radar element is discussed. The DARN/SupperDARN network is particularly suited to studies of large-scale dynamical processes in the magnetosphere-ionosphere system, such as the evolution of the global configuration of the convection electric field under changing IMF conditions and the development and global extent of large-scale MHD waves in the magnetosphere-ionosphere cavity. A description of the HF radars within SuperDARN is given along with an overview of their existing and intended locations, intended start of operations, Principal Investigators, and sponsoring agencies. Finally, the operation of the DARN experiment within ISTP/GGS, the availability of data, and the form and availability of the Key Parameter files is discussed.