The geometry of peaked solitons and billiard solutions of a class of integrable PDE's
 Mark S. Alber,
 Roberto Camassa,
 Darryl D. Holm,
 Jerrold E. Marsden
 … show all 4 hide
Rent the article at a discount
Rent now* Final gross prices may vary according to local VAT.
Get AccessAbstract
The purpose of this Letter is to investigate the geometry of new classes of solitonlike solutions for integrable nonlinear equations. One example is the class of peakons introduced by Camassa and Holm [10] for a shallow water equation. We put this equation in the framework of complex integrable Hamiltonian systems on Riemann surfaces and draw some consequences from this setting. Amongst these consequences, one obtains new solutions such as quasiperiodic solutions,nsolitons, solitons with quasiperiodic background, billiard, andnpeakon solutions and complex angle representations for them. Also, explicit formulas for phase shifts of interacting soliton solutions are obtained using the method of asymptotic reduction of the corresponding angle representations. The method we use for the shallow water equation also leads to a link between one of the members of the Dym hierarchy and geodesic flow onNdimensional quadrics. Other topics, planned for a forthcoming paper, are outlined.
 Ablowitz, M. J. and Segur, H.,Solitons and the Inverse Scattering Transform, SIAM, Philadelphia, 1981.
 Alber, S. J., Investigation of equations of Kotewegde Vries type by the method of recurrence relations,J. London Math. Soc. 19, 467–480 (1979).
 Alber, M. S., On integrable systems and semiclassical solutions of the stationary Schrödinger equations,Inverse Problems 5, 131–148 (1989).
 Alber, M. S. and Alber, S. J., Hamiltonian formalism for finitezone solutions of integrable equations,C.R. Acad. Sci. Paris 301, 777–781 (1985).
 Alber, M. S. and Alber, S. J., Hamiltonian formalism for nonlinear Schrödinger equations and sineGordon equations,J. London Math. Soc. 36, 176–192 (1987).
 Alber, M. S., Camassa, R., Holm, D. D., and Marsden, J. E., in preparation (1994).
 Alber, M. S. and Marsden, J. E., On geometric phases for soliton equations,Comm. Math. Phys. 149, 217–240 (1992).
 Alber, M. S. and Marsden, J. E.,Geometric Phases and Monodromy at Singularities, NATO Advanced Study Institute, Series C 1994, to appear.
 Alber, M. S. and Marsden, J. E., Resonant geometric phases for soliton equations,Fields Institute Commun. 1994, to appear.
 Camassa, R. and Holm, D. D., An integrable shallow water equation with peaked solitons,Phys. Rev. Lett,71, 1661–1664 (1993).
 Camassa, R., Holm, D. D., and Hyman, J. M., A new integrable shallow water equation,Adv. Appl. Mech. (1993), to appear.
 Ercolani, N. and McKean, H. P., Geometry of KdV(4): Abel sums, Jacobi variety, and theta function in the scattering case,Invent. Math. 99, 483 (1990).
 Flaschka, H. and McLaughlin, D. W., Canonically conjugate variables for the Kortewegde Vries equation and the Toda lattice with periodic boundary conditions,Prog. Theoret. Phys. 55, 438–456 (1976).
 Ge, Z., Kruse, H. P., Marsden, J. E., and Scovel, C., Poisson brackets in the shallow water approximation, preprint (1993).
 Green, A. E. and Naghdi, P. M., A derivation of equations for wave propagation in water of variable depth,J. Fluid Mech. 78, 237–246 (1976).
 Kruskal, M. D., Nonlinear wave equations, in J. Moser (ed),Dynamical Systems, Theory and Applications, Lecture Notes in Physics 38, Springer, New York, 1975.
 Marsden, J. E., Montgomery, R., and Ratiu, T., CartanHannayBerry phases and symmetry,Contemp. Math. 97, 279 (1989); see alsoMem. Amer. Math. Soc. 436.
 McKean, H. P.,Integrable Systems and Algebraic Curves, Lecture Notes in Mathematics, SpringerVerlag, Berlin, 1979.
 McKean, H. P., Theta functions, solitons, and singular curves, in C. I. Byrnes (ed),PDE and Geometry, Proc. of Park City Conference, 1977.
 Morse, P. M. and Feshbach, H.,Methods of Theoretical Physics, McGrawHill, New York, 1953.
 Whitham, G. B.,Linear and Nonlinear Waves, Wiley, New York, 1974, p. 585.
 Whitham, G. B., Notes from the course ‘Special Topics in Nonlinear Wave Propagation’, California Institute of Technology, Pasadena CA, 1988.
 Weinstein, A., Connections of Berry and Hannay type for moving Lagrangian submanifolds,Adv. in Math. 82, 133–159 (1990).
 Wadati, M., Ichikawa, Y. H., and Shimizu, T., Cusp soliton of a new integrable nonlinear evolution equation,Prog. Theoret. Phys. 64, 1959–1967 (1980).
 Title
 The geometry of peaked solitons and billiard solutions of a class of integrable PDE's
 Journal

Letters in Mathematical Physics
Volume 32, Issue 2 , pp 137151
 Cover Date
 19941001
 DOI
 10.1007/BF00739423
 Print ISSN
 03779017
 Online ISSN
 15730530
 Publisher
 Kluwer Academic Publishers
 Additional Links
 Topics
 Keywords

 58F07
 70H99
 76B15
 Authors

 Mark S. Alber ^{(1)}
 Roberto Camassa ^{(2)}
 Darryl D. Holm ^{(2)}
 Jerrold E. Marsden ^{(3)}
 Author Affiliations

 1. School of Mathematics, Institute for Advanced Study, Princeton and Department of Mathematics, University of Notre Dame, 46556, Notre Dame, IN, USA
 2. Center for Nonlinear Studies and Theoretical Division, Los Alamos National Laboratory, 87545, Los Alamos, NM, USA
 3. Department of Mathematics, University of California, 94720, Berkeley, CA, USA