Skip to main content
Log in

Quantum mechanics from self-interaction

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We explore the possibility thatzitterbewegung is the key to a complete understanding of the Dirac theory of electrons. We note that a literal interpretation of thezitterbewegung implies that the electron is the seat of an oscillating bound electromagnetic field similar to de Broglie's pilot wave. This opens up new possibilities for explaining two major features of quantum mechanics as consequences of an underlying physical mechanism. On this basis, qualitative explanations are given for electron diffraction, the existence of quantized radiationless states, the Pauli principle, and other features of quantum mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Schroedinger,Sitzungb. Preuss. Akad. Wiss. Phys.-Math Kl. 24, 418 (1930).

    Google Scholar 

  2. H. Thirring,Principles of Quantum Electrodynamics (Academic Press, New York, 1958).

    Google Scholar 

  3. K. Huang, “On the Zitterbewegung of the Electron,”Am. J. Phys. 20, 479 (1952).

    Google Scholar 

  4. A. O. Barut and A. J. Bracken,Phys. Rev. D 23, 2454 (1981).

    Google Scholar 

  5. J. A. Lock, “The Zitterbewegung of the Free Localized Dirac Particles,”Am. J. Phys. 47, 797 (1979).

    Google Scholar 

  6. H. C. Corben,Classical and Quantum Theories of Spinning Particles (Holden-Day, San Francisco, 1968).

    Google Scholar 

  7. P. J. Browne,Ann. Phys. (N.Y.)59, 254 (1970).

    Google Scholar 

  8. A. O. Barut, “What is an Electron?” inQuantum Electrodynamics in Strong Fields, W. Greiner, ed. (Plenum New York 1983).

    Google Scholar 

  9. J. D. Bjorken and S. D. Drell,Relativistic Quantum Mechanics (McGraw-Hill, New York, 1964).

    Google Scholar 

  10. F. Rohrlich,Classical Charged Particles (Addison-Wesley, Reading, Massachusetts, 1965).

    Google Scholar 

  11. A. Landé,Am. J. Phys. 33, 123 (1965);43, 701 (1975);New Foundations of Quantum Mechanics (Cambridge University Press, Cambridge, 1965).

    Google Scholar 

  12. L. de Broglie,The Current Interpretation of Wave Mechanics: A Critical Study (Elsevier, Amsterdam, 1964);Nonlinear Wave Mechanics: A Causal Interpretation (Elsevier, Amsterdam, 1960).

    Google Scholar 

  13. L. Halpern, personal communication.

  14. D. Hestenes, “Spin and Uncertainty in the Interpretation of Quantum Mechanics,”Am. J. Phys. 47, 399 (1979).

    Google Scholar 

  15. T. A. Welton,Phys. Rev. 74, 1157 (1948); J. D. Bjorken and S. D. Drell,Relativistic Quantum Mechanics (McGraw-Hill, New York, 1964), p. 58.

    Google Scholar 

  16. E. T. Jaynes,Coherence and Quantum Optics, L. Mandel and E. Wolf, eds. (Plenum, New York, 1978), pp. 495–509.

    Google Scholar 

  17. A. O. Barut and J. Kraus, “Nonperturbative Quantum Electrodynamics: The Lamb Shift,”Found. Phys. 13, 189 (1983).

    Google Scholar 

  18. P. W. Milonni and W. A. Smith,Phys. Rev. A 11, 814 (1975).

    Google Scholar 

  19. A. O. Barut, “The Zitterbewegung and the Einstein A Coefficient of Spontaneous Emission,” inOld and New Questions in Physics, Cosmology, Philosophy, and Theoretical Biology, A. van der Merwe, ed. (Plenum, New York, 1983).

    Google Scholar 

  20. A. O. Barut, “Stable Particles as Building Blocks of Matter,” inSurv. High Energy Phys. 1(2), 113 (1980).

    Google Scholar 

  21. D. Hestenes, “Real Spinor Fields,”J. Math. Phys. 8, 798 (1967).

    Google Scholar 

  22. D. Hestenes, “Local Observables in the Dirac Theory,”J. Math. Phys. 14, 893 (1973).

    Google Scholar 

  23. D. Hestenes, “Observables, Operators, and Complex Numbers in the Dirac Theory,”J. Math. Phys. 16, 556 (1975).

    Google Scholar 

  24. D. Hestenes, “Geometry of the Dirac Theory,” inMathematics of Physical Space-Time, J. Keller, ed. (Facultad de Quimica, Universidad Nacional Autonoma de Mexico, Mexico City, 1981).

    Google Scholar 

  25. D. Hestenes,Space-Time Algebra (Gordon and Breach, New York, 1966).

    Google Scholar 

  26. D. Hestenes, “Space-time Structure of Weak and Electromagnetic Interactions,”Found. Phys. 12, 153 (1982).

    Google Scholar 

  27. L. de Broglie, “Ondes et Quanta,”Compt. Rend. 177, 507 (1923).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hestenes, D. Quantum mechanics from self-interaction. Found Phys 15, 63–87 (1985). https://doi.org/10.1007/BF00738738

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00738738

Keywords

Navigation