Skip to main content
Log in

A fundamental link between system theory and statistical mechanics

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

A fundamental link between system theory and statistical mechanics has been found to be established by the Kolmogorov entropy K. By this quantity the temporal evolution of dynamical systems can be classified into regular, chaotic, and stochastic processes. Since K represents a measure for the internal information creation rate of dynamical systems, it provides an approach to irreversibility. The formal relationship to statistical mechanics is derived by means of an operator formalism originally introduced by Prigogine. For a Liouville operator L and an information operator\(\tilde M\) acting on a distribution in phase space, it is shown that i[L,\(\tilde M\)]≡KI (I=identity operator). As a first consequence of this equivalence, a relation is obtained between the chaotic correlation time of a system and Prigogine's concept of a “finite duration of presence.” Finally, the existence of chaos in quantum systems is discussed with respect to the existence of a quantum mechanical time operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. Haken,Synergetics—An Introduction, 3rd edn. (Springer, Berlin, 1983).

    Google Scholar 

  2. G. Nicolis and I. Prigogine,Self-Organization in Nonequilibrium Systems (Wiley, New York, 1977).

    Google Scholar 

  3. J.-P. Eckmann and D. Ruelle,Rev. Mod. Phys. 57, 617 (1985).

    Google Scholar 

  4. I. Prigogine,Vom Sein zum Werden, 2nd edn. (Piper, München, 1985), and references therein; I. Prigogine,From Being to Becoming, 2nd edn. (Freeman, New York, forthcoming).

    Google Scholar 

  5. I. Prigogine,Non-Equilibrium Statistical Mechanics (Interscience, New York, 1962).

    Google Scholar 

  6. V. I. Oseledec,Trans. Mosc. Math. Soc. 19, 197 (1968) [Tr. Mosk. Mat. Ova. 19, 179 (1968)].

    Google Scholar 

  7. P. Grassberger, “Information aspects of strange attractors,” inChaos in Astrophysics, J. R. Buchler, J. M. Perdang, and E. A. Spiegel, eds. (Reidel, Dordrecht, 1985).

    Google Scholar 

  8. M. W. Hirsch and S. Smale,Differential Equations, Dynamic Systems, and Linear Algebra (Academic Press, New York, 1965).

    Google Scholar 

  9. J. B. Pesin,Russ. Math. Surv. 32, 455 (1977) [Usp. Mat. Nauk 32, 55 (1977)].

    Google Scholar 

  10. I. Procaccia,Phys. Scr. T 9, 40 (1985).

    Google Scholar 

  11. J. Balatoni and A. Renyi, inSelected Papers of A. Renyi, Vol. 1 (Akademie Budapest, 1976), p. 588.

  12. C. F. v. Weizsäcker,Aufbau der Physik (Hanser, München, 1985).

    Google Scholar 

  13. C. E. Shannon and C. Weaver,The Mathematical Theory of Communication (University of Illinois Press, Urbana, Illinois, 1962).

    Google Scholar 

  14. L. Arnold and W. Kliemann, “Qualitative theory of stochastic systems,” inProbability Analysis and Related Topics, Vol. 3 (Academic Press, New York, 1983).

    Google Scholar 

  15. F. Takens, inLecture Notes in Mathematics 898, D. A. Rand and L. S. Young, eds. (Springer, Berlin, 1981).

    Google Scholar 

  16. N. H. Packard, J. P. Crutchfield, J. D. Farmer, and R. S. Shaw,Phys. Rev. Lett. 45, 712 (1980).

    Google Scholar 

  17. P. Grassberger and I. Procaccia,Phys. Rev. A 28, 2591 (1983).

    Google Scholar 

  18. A. M. Albano, J. Abounadi, T. H. Chyba, C. E. Searle, S. Yong, R. S. Gioggia, and N. B. Abraham,J. Opt. Soc. Am. B 2, 47 (1985).

    Google Scholar 

  19. H. Atmanspacher and H. Scheingraber,Phys. Rev. A 34, 253 (1986).

    Google Scholar 

  20. G. Mayer-Kress, ed.,Dimensions and Entropies in Chaotic Systems (Springer, Berlin, 1986).

    Google Scholar 

  21. P. Billingsley,Ergodic Theory and Information (Wiley, New York, 1965).

    Google Scholar 

  22. H. Haken,Phys. Scr. 32, 274 (1985).

    Google Scholar 

  23. A. Ben Mizrachi, I. Procaccia, and P. Grassberger,Phys. Rev. A 29, 975 (1984).

    Google Scholar 

  24. S. Grossmann and H. Horner,Z. Phys. B 60, 79 (1985).

    Google Scholar 

  25. F. T. Arecchi,Phys. Scr. T 9, 85 (1985).

    Google Scholar 

  26. G. Birkhoff,Lattice Theory, 3rd edn. (AMS Coll. Publ., Vol. 25, Providence, Rhode Island, 979).

  27. Y. Elskens and I. Prigogine,Proc. Natl. Acad. Sci. USA 83, 5756 (1986); M. Courbage,Physica A 122, 459 (1983); S. Goldstein and O. Penrose,J. Stat. Phys. 24, 325 (1981).

    Google Scholar 

  28. S. Goldstein,Israel J. Math. 38, 241 (1981).

    Google Scholar 

  29. B. Misra,Proc. Natl. Acad. Sci. USA 75, 1627 (1978).

    Google Scholar 

  30. B. V. Chirikov,Found. Phys. 16, 39 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atmanspacher, H., Scheingraber, H. A fundamental link between system theory and statistical mechanics. Found Phys 17, 939–963 (1987). https://doi.org/10.1007/BF00734321

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00734321

Keywords

Navigation