Skip to main content
Log in

Classical electrodynamic systems interacting with classical electromagnetic random radiation

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

In the past, a few researchers have presented arguments indicating that a statistical equilibrium state of classical charged particles necessarily demands the existence of a temperature-independent, incident classical electromagnetic random radiation. Indeed, when classical electromagnetic zero-point radiation is included in the analysis of problems with macroscopic boundaries, or in the analysis of charged particles in linear force fields, then good agreement with nature is obtained. In general, however, this agreement has not been found to hold for charged particles bound in nonlinear force fields. The point is raised here that this disagreement arising for nonlinear force fields may be a premature conclusion on this classical theory for describing atomic systems, because past calculations have not directed strict attention to electromagnetic interactions between charges. This point is illustrated here by examining the classical hydrogen atom and showing that this problem has still not been adequately solved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Einstein and L. Hopf,Ann. Phys. (Leipzig) 33, 1105 (1910).

    Google Scholar 

  2. M. Planck,The Theory of Heat Radiation (Dover, New York, 1959).

    Google Scholar 

  3. T. W. Marshall,Proc. R. Soc. London Ser. A 276, 475 (1963).

    Google Scholar 

  4. T. W. Marshall,Proc. Cambridge Philos. Soc. 61, 537 (1965).

    Google Scholar 

  5. T. H. Boyer,Phys. Rev. 182, 1374 (1969).

    Google Scholar 

  6. T. H. Boyer,Phys. Rev. 186, 1304 (1969).

    Google Scholar 

  7. T. H. Boyer,Phys. Rev. D 11, 790 (1975).

    Google Scholar 

  8. P. Claverie and S. Diner,Int. J. Quantum Chem. 12,Suppl. 1, 41 (1977).

    Google Scholar 

  9. H. E. Puthoff,Phys. Rev. D 35, 3266 (1987).

    Google Scholar 

  10. T. H. Boyer,Phys. Rev. D 13, 2832 (1976).

    Google Scholar 

  11. T. H. Boyer,Phys. Rev. A 18, 1228 (1978).

    Google Scholar 

  12. P. Claverie, in: (a)Proceedings of the Einstein Centennial Symposium on Fundamental Physics, S.M. Mooreet al., eds. (Universidad de los Andes, Bogotá, 1981), p. 229;

    Google Scholar 

  13. P. Claverie,Dynamical Systems and Microphysics, A. Blaquiereet al. eds., (CISM Courses and Lectures, No. 261 (Springer, New York, 1980), p. 111.

    Google Scholar 

  14. T. W. Marshall,Physica A 103, 172 (1980).

    Google Scholar 

  15. T. W. Marshall and P. Claverie,J. Math. Phys. 21, 1819 (1980).

    Google Scholar 

  16. T. W. Marshall and P. Claverie,Physica A 104, 223 (1980).

    Google Scholar 

  17. P. Claverie, L. Pesquera, and F. Soto,Phys. Lett. A 80, 113 (1980).

    Google Scholar 

  18. A. Denis, L. Pesquera, and P. Claverie,Physica A 109, 178 (1981).

    Google Scholar 

  19. S. M. Moore and J. A. Ramírez,Nuovo Cimento B 64, 275 (1981).

    Google Scholar 

  20. P. Claverie and F. Soto,J. Math. Phys. 23, 753 (1982).

    Google Scholar 

  21. L. Pesquera and P. Claverie,J. Math. Phys. 23, 1315 (1982).

    Google Scholar 

  22. R. Blanco, L. Pesquera, and E. Santos,Phys. Rev. D 27, 1254 (1983).

    Google Scholar 

  23. S. Sachidanandam and I. V. V. Raghavacharyulu,Indian J. Pure Appl. Phys. 21, 408 (1983).

    Google Scholar 

  24. R. Blanco, L. Pesquera, and E. Santos,Phys. Rev. D 29, 2240 (1984).

    Google Scholar 

  25. L. Pesquera and R. Blanco,J. Math. Phys. 28, 913 (1987).

    Google Scholar 

  26. R. Blanco, L. Pesquera, and E. Santos,J. Math. Phys. 28, 1749 (1987).

    Google Scholar 

  27. T. H. Boyer,Phys. Rev. D 11, 809 (1975).

    Google Scholar 

  28. T. H. Boyer, inFoundations of Radiation Theory and Quantum Electrodynamics, A. O. Barut, ed. (Plenum, New York, 1980), pp. 49–63.

    Google Scholar 

  29. L. de la Peña, inStochastic Processes Applied to Physics and Other Related Fields, B. Gómezet al., eds. (World Scientific, Singapore, 1983).

    Google Scholar 

  30. P. A. M. Dirac,Proc. R. Soc. London Ser. A 167, 148 (1938).

    Google Scholar 

  31. F. Rohrlich,Classical Charged Particles (Addison-Wesley, Reading, Massachusetts, 1965).

    Google Scholar 

  32. C. Teitelboim,Phys. Rev. D 1, 1572 (1970);2, 1763 (E) (1970).

    Google Scholar 

  33. C. Teitelboim, D. Villarroel, and Ch. G. van Weert,Riv. Nuovo Cimento 3, No. 9, 1 (1980).

    Google Scholar 

  34. T. H. Boyer,Found. Phys. 19:1371 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cole, D.C. Classical electrodynamic systems interacting with classical electromagnetic random radiation. Found Phys 20, 225–240 (1990). https://doi.org/10.1007/BF00731647

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00731647

Keywords

Navigation