Skip to main content
Log in

Measurement understood through the quantum potential approach

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We review briefly the quantum potential approach to quantum theory, and show that it yields a completely consistent account of the measurement process, including especially what has been called the “collapse of the wave function.” This is done with the aid of a new concept of active information, which enables us to describe the evolution of a physical system as a unique actuality, in principle independent of any observer (so that we can, for example, provide a simple and coherent answer to the Schrödinger cat paradox). Finally, we extend this approach to relativistic quantum field theories, and show that it leads to results that are consistent with all the known experimental implications of the theory of relativity, despite the nonlocality which this approach entails.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Bohm,Phys. Rev. 85, 166 (1952).

    Google Scholar 

  2. D. Bohm,Phys. Rev. 85, 180 (1952).

    Google Scholar 

  3. D. Bohm and J.-P. Vigier,Phys. Rev. 96, 208 (1954).

    Google Scholar 

  4. C. Philippidis, D. Bohm, and R. D. Kaye,Nuovo Cimento B 71, 75 (1982).

    Google Scholar 

  5. C. Philippidis, C. Dewdney, and B. J. Hiley,Nuovo Cimento B 52, 15 (1979).

    Google Scholar 

  6. C. Dewdney and B. J. Hiley,Found. Phys. 12, 27 (1982).

    Google Scholar 

  7. L. de Broglie,Une tentative d'interprétation causale et non linéaire de la mécanique ondulatoire: la théorie de la double solution (Gauthier-Villars, Paris, 1956).

    Google Scholar 

  8. D. Bohm and B. J. Hiley,Found. Phys. 5, 93 (1975).

    Google Scholar 

  9. N. Bohr,Atomic Physics and Human Knowledge (Science Editions, New York, 1961).

    Google Scholar 

  10. E. Wigner,The Scientist Speculates, I. J. Good, ed. (Putnam, New York, 1965).

    Google Scholar 

  11. H. Everett,Rev. Mod. Phys. 29, 454 (1957).

    Google Scholar 

  12. J. S. Bell, CERN Preprint TH1424 (1971).

  13. A. Aspect, J. Dalibard, and C. Roger,Phys. Rev. Lett. 49, 1804 (1982).

    Google Scholar 

  14. D. Bohm and B. J. Hiley,Found. Phys. 12, 1001 (1982).

    Google Scholar 

  15. E. Madelung,Z. Phys. 40, 332 (1926).

    Google Scholar 

  16. A. Baracca, D. Bohm, B. J. Hiley, and A. E. G. Stuart,Nuovo Cimento B 28, 453 (1975).

    Google Scholar 

  17. D. Bohm, R. Shiller, and J. Tiomno,Nuovo Cimento (Suppl.)1 48 (1955).

    Google Scholar 

  18. D. Bohm,Quantum Theory (Prentice-Hall, New Jersey, 1960), Chapter 22.

    Google Scholar 

  19. A. Daneri, A. Loinger, and G. M. Prosperi,Nucl. Phys. 44, 297 (1962);Nuovo Cimento B 44, 119 (1966).

    Google Scholar 

  20. D. Bohm,Quantum Theory (Prentice-Hall, New Jersey, 1960), Chapter 8.

    Google Scholar 

  21. I. Prigogine,From Being to Becoming (Freeman, San Francisco, 1980).

    Google Scholar 

  22. R. L. Pfleegor and L. Mandel,Phys. Rev. 159, 1084 (1967);J. Opt. Soc. Amer. 58, 946 (1968).

    Google Scholar 

  23. P. A. M. Dirac,Nature (London)168, 906 (1951).

    Google Scholar 

  24. B. S. de Witt,General Relativity: An Einstein Centenary Survey, S. W. Hawking and W. Israel, eds. (Cambridge University Press, Cambridge, 1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bohm, D., Hiley, B.J. Measurement understood through the quantum potential approach. Found Phys 14, 255–274 (1984). https://doi.org/10.1007/BF00730211

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00730211

Keywords

Navigation