Skip to main content
Log in

A resolution of the classical wave-particle problem

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The classical wave-particle problem is resolved in accord with Newton's concept of the particle nature of light by associating particle density and flux with the classical wave energy density and flux. Point particles flowing along discrete trajectories yield interference and diffraction patterns, as illustrated by Young's double pinhole interference. Bound particle motion is prescribed by standing waves. Particle motion as a function of time is presented for the case of a “particle in a box.” Initial conditions uniquely determine the subsequent motion. Some discussion regarding quantum theory is preseted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. I. Newton,Opticks, or Treatise of Reflections, Refractions, Inflections and Colours of Light, 4th edn. London, 1730 (Dover, New York, 1952; a reprint of the 1931 edition of G. Bell and Sons).

  2. Th. Young,Philos. Trans. R. Soc. London, pp. 12, 387 (1802); p. 1 (1804).

  3. A. Fresnel,Mem. Acad. Sci. 5, 339 (1826).

    Google Scholar 

  4. W. R. Hamilton,Philos. Trans. R. Soc. London, p. 307 (1834).

  5. Maupertuis,Mem. Acad. Paris, p. 417 (1744).

  6. M. Planck,Verh. Dtsch. Phys. Ges. 2, 202, 237 (1900).

    Google Scholar 

  7. A. Einstein,Ann. Phys. (Leipzig) 17, 132 (1905).

    Google Scholar 

  8. L. de Broglie,Compt. Rend. 177, 507 548 (1923);179, 39, 676 (1924);Philos. Mag. 47, 446 (1924);Ann. Phys. (Paris) 3, 22 (1924).

    Google Scholar 

  9. E. Schrödinger,Ann. Phys. (Leipzig) 79, 361, 489 (1926);80, 437 (1926);81, 109 (1926).

    Google Scholar 

  10. E. Madelung,Z. Phys. 40, 322 (1926).

    Google Scholar 

  11. L. de Broglie,Compt. Rend. 183, 447 (1926);184, 273 (1927);185, 380 (1927);J. Phys. (Paris) 8, 225 (1927);Nonlinear Wave Mechanics (Elsevier, Amsterdam, 1960).

    Google Scholar 

  12. D. Bohm,Phys. Rev. 85, 166, 180 (1952);Prog. Theor. Phys. 9, 273 (1953);Causality and Chance in Modern Physics (Princeton University Press, Princeton, New Jersey, 1957).

    Google Scholar 

  13. J. P. Wesley,Phys. Rev. 122, 1932 (1961).

    Google Scholar 

  14. J. P. Wesley,Nuovo Cimento 37, 989 (1965).

    Google Scholar 

  15. R. D. Prosser,Int. J. Theor. Phys. 15, 169 (1976).

    Google Scholar 

  16. R. D. Prosser,Int. J. Theor. Phys. 15, 181 (1976).

    Google Scholar 

  17. C. Philippidis, C. Dewdney, and B. J. Hiley,Nuovo Cimento B 52, 15 (1979).

    Google Scholar 

  18. J. O. Hirschfelder and A. C. Christoph,J. Chem. Phys. 61, 5435 (1974).

    Google Scholar 

  19. C. Dewdney and B. J. Hiley,Found. Phys. 12, 27 (1982).

    Google Scholar 

  20. J. P. Wesley,Causal Quantum Theory (Benjamin Wesley, 7712 Blumberg, West Germany, 1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wesley, J.P. A resolution of the classical wave-particle problem. Found Phys 14, 155–170 (1984). https://doi.org/10.1007/BF00729972

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00729972

Keywords

Navigation