Skip to main content
Log in

On a more precise statement of Hamilton's principle

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

It has been recognized in the literature of the calculus of variations that the classical statement of the principle of least action (Hamilton's principle for conservative systems) is not strictly correct. Recently, mathematical proofs have been offered for what is claimed to be a more precise statement of Hamilton's principle for conservative systems. According to a widely publicized version of this more precise statement, the action integral for conservative systems is a minimum for discrete systems for small time intervals only and is never minimum for continuous systems. In this paper, two contradictions to this “more precise” statement are demonstrated, one for a discrete system and one for a continuous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. W. Yourgrau and S. Mandelstam,Variational Principles in Dynamics and Quantum Theory, 3rd ed. (Pitman & Sons, 1968), pp. 16, 175, 177.

  2. W. F. Osgood,Mechanics (MacMillan, 1937), p. 356.

  3. M. R. Hestenes,Modern Mathematics for the Engineer (McGraw-Hill, 1956), p. 75.

  4. I. M. Gelfand and S. V. Fomin,Calculus of Variations (Prentice Hall, 1963), p. 159.

  5. D. R. Smith,Variational Methods in Optimization (Prentice Hall, 1974), p. 195.

  6. D. R. Smith and C. V. Smith, Jr.,AIAA J. 12, 1573 (1974).

    Google Scholar 

  7. C. D. Bailey,ACTA Mechanica 36, 63 (1980).

    Google Scholar 

  8. C. D. Bailey,J. Sound Vibration 44, 15 (1976).

    Google Scholar 

  9. C. D. Bailey,Computer Methods in Applied Mechanics and Engineering 7, 235 (1976).

    Google Scholar 

  10. C. D. Bailey,Found. Phys. 5, 433 (1975).

    Google Scholar 

  11. C. D. Bailey,ASME J. Applied Mechanics 43, 684 (1976).

    Google Scholar 

  12. C. D. Bailey and J. L. Haines,Computer Methods in Applied Mechanics and Engineering, to appear.

  13. D. H. Hodges,AIAA J. 17, 924 (1979).

    Google Scholar 

  14. D. H. Hodges,American Helicopter Society J. 24, 43 (1979).

    Google Scholar 

  15. D. L. Hitzl and D. A. Levinson,Celestial Mechanics,22, 255 (1980).

    Google Scholar 

  16. D. L. Hitzl,J. Computational Phys.,38, 185 (1980).

    Google Scholar 

  17. M. Baruch and R. Riff, Technion Israel Institute of Technology, TAE 403 (1980).

  18. T. E. Simkins,AIAA J. 16, 559 (1978).

    Google Scholar 

  19. W. R. Hamilton,Phil. Trans. R. Soc. Lond. 124, 247 (1834).

    Google Scholar 

  20. H. Goldstein,Classical Mechanics (Addison-Wesley, 1950).

  21. E. T. Whittaker,Analytical Dynamics (Cambridge University Press, 1st ed., 1904; 4th ed., 1937), p. 245.

  22. A. G. Webster,The Dynamics of Particles and of Rigid, Elastic, and Fluid Bodies (G. E. Stechert & Co., 1st ed., 1904; 3rd ed., 1942), p. 97.

  23. C. D. Bailey,AIAA J. 17, 541 (1979).

    Google Scholar 

  24. C. V. Smith, Jr.,ASME J. Applied Mechanics 44, 796 (1977).

    Google Scholar 

  25. C. D. Bailey,ASME J. Applied Mechanics 44, 796 (1977).

    Google Scholar 

  26. C. D. Bailey,J. Sound Vibration 54, 454 (1977).

    Google Scholar 

  27. C. D. Bailey,AIAA J. 18, 347 (1980).

    Google Scholar 

  28. R. D. Witchey, The Ohio State University, Thesis (1980).

  29. X. Culverwell,Proc. London Math. Soc. XXIII, 241 (1892) [cited in Ref. 21].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bailey, C.D. On a more precise statement of Hamilton's principle. Found Phys 11, 279–296 (1981). https://doi.org/10.1007/BF00726269

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00726269

Keywords

Navigation