Skip to main content
Log in

Quantum theory of state reduction and measurement

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The central problem in the quantum theory of measurement, how to describe the process of state reduction in terms of the quantum mechanical formalism, is solved on the basis of the relativity of quantal states, which implies that once the apparatus is detected in a well-defined state, the object state must reduce to a corresponding one. This is a process termed by Schrödinger disentanglement. Here, it is essential to observe that Renninger's negative result does constitute an actual measurement process. From this point of view, Heisenberg's interpretation of his microscope experiment and the Einstein-Podolsky-Rosen arguments are reinvestigated. Satisfactory discussions are given to various experimental situations, such as the Stern-Gerlach-type experiment, successive measurements, macroscopic measurements, and Schrödinger's cat. Finally it is proposed to regard a state vector in quantum mechanics as an irreducible physical construct, in Margenau's sense, that is not further analyzable both mathematically and conceptually.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Bohr,Atomic Physics and Human Knowledge (John Wiley, New York, 1958); W. Heisenberg,Die Physikalischen Prinzipien der Quantentheorie (Hirzel, Leipzig, 1930).

    Google Scholar 

  2. J. von Neumann,Mathematische Grundlagen der Quantenmechanik (Springer-Verlag, Berlin, 1932).

    Google Scholar 

  3. J. M. Jauch, E. P. Wigner, and M. M. Yanase,Nuovo Cimento 48B, 144 (1967).

    Google Scholar 

  4. H. P. Krips, Suppl.Nuovo Cimento 6, 1127 (1968).

    Google Scholar 

  5. E. P. Wigner,Am. J. Phys. 31, 6 (1963).

    Google Scholar 

  6. A. Einstein, B. Podolsky, and N. Rosen,Phys. Rev. 47, 777 (1935).

    Google Scholar 

  7. E. Schrödinger,Proc. Cambridge Phil. Soc. 31, 555 (1935).

    Google Scholar 

  8. H. Margenau,Phys. Rev. 49, 240 (1936).

    Google Scholar 

  9. N. Bohr,Phys. Rev. 48, 696 (1935).

    Google Scholar 

  10. W. Heisenberg,Z. Physik 43, 172 (1927).

    Google Scholar 

  11. P. A. M. Dirac,Sci. Am. 208, No. 5, 45 (1963).

    Google Scholar 

  12. B. S. DeWitt,Battelle Rencontres, C. M. DeWitt and J. A. Wheeler, eds. (Benjamin, New York, 1968), p. 318.

    Google Scholar 

  13. M. Born,Z. Physik 38, 803 (1926).

    Google Scholar 

  14. M. Renninger,Z. Physik 158, 417 (1960).

    Google Scholar 

  15. H. Margenau,Phil. Sci. 25, 23 (1958).

    Google Scholar 

  16. I. Fujiwara,Progr. Theoret. Phys. (Kyoto) 44, 1701 (1970).

    Google Scholar 

  17. E. Schrödinger,Naturwissenschaften 23, 823 (1935).

    Google Scholar 

  18. H. Everett,Rev. Mod. Phys. 29, 454 (1957).

    Google Scholar 

  19. J. McKnight,Phil. Sci. 24, 321 (1957).

    Google Scholar 

  20. W. H. Furry,Phys. Rev. 49, 393 (1936).

    Google Scholar 

  21. E. Schrödinger,Nuovo Cimento 1, 5 (1955).

    Google Scholar 

  22. W. Heisenberg, Theory, criticism and philosophy, inFrom a Life of Physics (IAEA, Vienna).

  23. H. Margenau,Rev. Mod. Phys. 13, 176 (1941).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujiwara, I. Quantum theory of state reduction and measurement. Found Phys 2, 83–110 (1972). https://doi.org/10.1007/BF00708495

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00708495

Keywords

Navigation