Skip to main content
Log in

Thermodynamics of averaged motion

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The thermodynamics of averaged motion treats the asymptotic spatiotemporal evolution of nonlinear irreversible processes. Dissipative and conservative actions are associated with short and long spatiotemporal scales, respectively. The motion of asymptotically stable systems is slow, monotonic, and continuous, so that the microscopic state variable description of rapid motion can be supplanted by an analysis of the macroscopic variable equations of motion of amplitude and phase. Rapid motion is associated with instability, and the direction of system motion is determined by thermodynamic criteria, in place of an analysis of the microscopic equations of motion. The characteristic structural configurations, deduced from the extremum principles of partial differential equations, are compared with the thermodynamic criteria. As a result of the nature of asymptotic motion, variational principles exist which characterize the asymptotic states of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. B. H. Lavenda,Lett. Nuovo Cimento 10, 385 (1972); to appear inFound. Phys.

    Google Scholar 

  2. N. Minorsky,Nonlinear Oscillations (Van Nostrand, New York, 1962).

    Google Scholar 

  3. A. A. Andronov, A. A. Vitt, and S. E. Khaikin,Theory of Oscillators (Pergamon Press, London, 1966).

    Google Scholar 

  4. B. H. Lavenda,Found. Phys. 3, 53 (1973).

    Google Scholar 

  5. S. Chapman and T. G. Cowling,The Mathematical Theory of Non-Uniform Gases (Cambridge Univ. Press, 1952).

  6. G. Whitham,Proc. Roy. Soc. A 283, 238 (1965),J. Fluid Mech. 44, 373 (1970).

    Google Scholar 

  7. I. M. Gel'fand,Usp. Mat. Nauk (N. S.) 14, 87 (1959).

    Google Scholar 

  8. R. Courant and K. O. Friedrich,Supersonic Flow and Shock Waves (Interscience, New York, 1948).

    Google Scholar 

  9. A. Blaquière,Nonlinear System Analysis (Academic Press, New York, 1962).

    Google Scholar 

  10. M. H. Protter and H. F. Weinberger,Maximum Principles in Differential Equations (Prentice Hall, Englewood Cliffs, New Jersey, 1967).

    Google Scholar 

  11. B. H. Lavenda,Found. Phys. 2(2/3), 161 (1972).

    Google Scholar 

  12. S. Machlup and L. Onsager,Phys. Rev. 91, 1512 (1953).

    Google Scholar 

  13. B. H. Lavenda,Phys. Rev. A 9, 929 (1974).

    Google Scholar 

  14. Lord Rayleigh,Theory of Sound (Dover, New York, 1945).

    Google Scholar 

  15. L. Onsager,Phys. Rev. 37, 405 (1931).

    Google Scholar 

  16. L. Onsager and S. Machlup,Phys. Rev. 91, 1505 (1953).

    Google Scholar 

  17. L. D. Landau and E. M. Lifshitz,Fluid Mechanics (Pergamon Press, London, 1959).

    Google Scholar 

  18. A. Katchalsky and P. F. Curran,Nonequilibrium Thermodynamics in Biophysics (Harvard Univ. Press, Cambridge, 1967).

    Google Scholar 

  19. R. Courant and D. Hilbert,Methods of Mathematical Physics (Interscience, New York, 1962), Vol. II.

    Google Scholar 

  20. E. Hopf,Proc. Am. Math. Soc. 3, 791 (1952).

    Google Scholar 

  21. I. Prigogine,Irreversible Thermodynamics (Interscience, New York, 1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lavenda, B.H. Thermodynamics of averaged motion. Found Phys 5, 573–589 (1975). https://doi.org/10.1007/BF00708430

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00708430

Keywords

Navigation