Skip to main content
Log in

Inhibition of methanogenesis by sulphate reducing bacteria competing for transferred hydrogen

  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

A methanogenic bacterial consortium was obtained after inoculation of benzoate medium under N2/CO2 atmosphere with intertidal sediment. A hydrogen donating organotroph andMethanococcus mazei were isolated from this enrichment. H2-utilising sulphate reducing bacteria were isolated under H2/CO2 in the absence of organic electron donors. TheMethanococcus was able to produce methane in yeast extract medium under N2/CO2 if the H2 donating organism was present, and sulphate reduction occurred if the hydrogen utilising sulphate reducing bacteria were grown with the H2 donating organism. The ability of the H2 utilising sulphate reducing bacteria to inhibitMethanococcus competitively was shown in cultures containing both of these H2 utilising bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

HDO:

hydrogen donating organism

SRB:

sulphate reducing bacteria

HSRB:

hydrogen utilising sulphate reducing bacteria

References

  • Bell, G. R., LeGall, J., Peck, H. D.: Evidence for the periplasmic location of hydrogenase inDesulfovibrio gigas. J. Bacteriol.120, 994–997 (1974)

    Google Scholar 

  • Bryant, M. P., Campbell, L. L., Ready, C. A., Crabill, M. R.: Growth ofDesulfovibrio in lactate or ethanol media low in sulfate in association with H2-utilizing methanogenic bacteria. Appl. Env. Microbiol.33, 1162–1169 (1977)

    Google Scholar 

  • Bryant, M. P., Wolin, M. J.: Rumen bacteria and their metabolic interaction. Proceedings of the first intersectional congress of the International Assoc. Soc., Vol. 2, Developmental Microbiology, Ecology, pp. 297–306. Tokyo: Science Council of Japan 1975

    Google Scholar 

  • Bryant, M. P., Wolin, E. A., Wolin, M. J., Wolfem, R. S.:Methanobacillus omelianskii, a symbiotic association of two species of bacteria. Arch. Mikrobiol.59, 20–31 (1967)

    Google Scholar 

  • Buchanan, R. E., Gibbons, N. E. (eds.) Bergey's manual of determinative bacteriology, 8th ed. Baltimore: Williams and Wilkins 1974

    Google Scholar 

  • Cappenberg, Th. E.: Interrelations between sulfate-reducing and methane producing bacteria in bottom deposits of a freshwater lake. 1. Field observations. Antonie van Leeuwenhoek. J Mikrobiol. Serol.40, 285–295 (1974)

    Google Scholar 

  • Cappenberg, Th. E.: Relationships between sulfate-reducing and methane producing bacteria. Plant Soil43, 123–139 (1975)

    Google Scholar 

  • Ferry, J. G., Wolfe, R. S.: Anaerobic degradation of benzoate to methane by a microbial consortium. Arch. Microbiol.107, 33–40 (1976)

    Google Scholar 

  • Hungate, R. E.: A roll-tube method for cultivation of strict anaerobes. In: Methods in Microbiology (J. R. Norris, D. W. Ribbons, eds.), Vol. 3B, pp. 117–132. New York: Academic Press 1969

    Google Scholar 

  • Iannotti, E. L., Kafkewitz, D., Wolin, M. J., Bryant, M. P.: Glucose fermentation products ofRuminococcus albus grown in continuous culture, withVibrio succinogenes: Changes caused by interspecies transfer of H2. J. Bacteriol.114, 1231–1240 (1973)

    Google Scholar 

  • Khosrovi, B., Macpherson, R., Miller, J. D. A.: Some observations of growth and hydrogen uptake byDesulfovibrio vulgaris. Arch. Mikrobiol.80, 324–337 (1971)

    Google Scholar 

  • Martens, C. S., Berner, R. A.: Methane production in the interstitial waters of sulfate-depleted marine sediments. Science185, 1167–1169 (1974)

    Google Scholar 

  • Postgate, J. R.: On the nutrition ofDesulphovibrio desulphuricans. A correction. J. Gen Microbiol.9, 440–444 (1953)

    Google Scholar 

  • Postgate, J. R.: Versatile medium for the enumeration of sulphate reducing bacteria. Appl. Microbiol.11, 265–267 (1963)

    Google Scholar 

  • Postgate, J. R.: Recent advances in the study of sulfate reducing bacteria. Bact. Rev.29, 425–441 (1965)

    Google Scholar 

  • Scheifinger, C. C., Lineham, B., Wolin, M. J.: H2 production bySelenomonas ruminantium in the absence and presence of methanogenic bacteria. Appl. Microbiol.29, 480–483 (1975)

    Google Scholar 

  • Sorokin, Y. I.: Experimental, investigation of bacterial sulfate reduction in the Black Sea. Microbiology32, 320–335 (1962)

    Google Scholar 

  • Sorokin, Y. I.: Role of carbon dioxide and acetate in biosynthesis by sulphate reducing bacteria. Nature (London)210, 551–552 (1966)

    Google Scholar 

  • Thauer, R. K., Jungermann, K., Decker, K.: Energy conservation in chemotrophic anaerobic bacteria. Bact. Rev.41, 100–180 (1977)

    Google Scholar 

  • Thorstenson, D. C.: Equilibrium distribution of small organic molecules in natural waters. Geochim. Cosmochim. Acta34, 745–770 (1970)

    Google Scholar 

  • Wolin, E. A., Wolin, M. J., Wolfe, R. S.: Formation of methane by bacterial extracts. J. Biol. Chem.238, 2882–2886 (1963)

    Google Scholar 

  • Winfrey, M. R., Zeikus, J. G.: Effect of sulfate on carbon and electron flow during microbial methanogenesis in freshwater sediments. Appl. Env. Microbiol.33, 275–281 (1977)

    Google Scholar 

  • Zeikus, J. G., Weimer, P. J., Nelson, D. R., Daniels, L.: Bacterial methanogenesis: Acetate as a methane precursor in pure culture. Arch. Microbiol.104, 129–134 (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abram, J.W., Nedwell, D.B. Inhibition of methanogenesis by sulphate reducing bacteria competing for transferred hydrogen. Arch. Microbiol. 117, 89–92 (1978). https://doi.org/10.1007/BF00689356

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00689356

Key words

Navigation