Skip to main content
Log in

Differential in vitro action of S-12363, a new vinblastine derivative, and of its epimer on microtubule proteins

  • Original Articles
  • Vinblastine Derivative, Epimer, Microtubule Proteins
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Summary

The action of two epimers of a new vinblastine derivative that differ in their in vivo antitumor activity and their cytotoxicity was studied in vitro in brain microtubule proteins. These two compounds, called S-12363 and S-12362, could not be distinguished from one another or from other active vinca alkaloids by their ability to prevent microtubule assembly. However, they differed strongly both from one another and from vincristine and vinblastine in their ability to induce the formation of tubulin paracrystals and in the stability of the paracrystals following temperature shifts from 0° to 37°C and vice versa. The most potent drugs, S-12363, induced considerable tubulin aggregation, which was even more pronounced than that observed in the presence of vincristine. Previous results have shown that S-12363, in contrast to vincristine, induces no neurotoxic effects. This observation is in disagreement with a direct relationship between tubulin aggregation and neurotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amos L, Jubb JS, Henderson R, Vigers G (1984) Arrangement of protofilaments in two forms of tubulin crystal induced by vinblastine. J Mol Biol 178: 711

    Google Scholar 

  2. Bensch KG, Malawista SE (1968) Microtubule crystals: a new biophysical phenomenon induced byVinca alkaloids. Nature 218: 1176

    Google Scholar 

  3. Bensch KG, Marantz R, Wisniewski H, Shelanski M (1969) Induction in vitro of microtubular crystals by vinca alkaloids. Science 165: 495

    Google Scholar 

  4. Berlion M, Pierré A, Kraus-Berthier L, Cros S, Poupon MF, Atassi G, Bizzari JP (1990) Pre-clinical activity of the new vinca alkaloid, S-12363. Ann Oncol 1 [Suppl]: 40

    Google Scholar 

  5. Bhattacharyya B, Wolff J (1976) Tubulin aggregation and disaggregation: mediation by two distinct vinblastine-binding sites. Proc Natl Acad Sci USA 73: 2375

    Google Scholar 

  6. Bhushana Rao KSP, Collard MP, Trouet A (1985) Vinca-23-oyl amino acid derivatives as new anticancer agents. Anticancer Res 5: 379

    Google Scholar 

  7. Bryan J (1972) Vinblastine and microtubules: II. Characterization of two protein subunits from the isolated crystals. J Mol Biol 66: 157

    Google Scholar 

  8. Bulinski JC, Borisy GG (1979) Self-assembly of microtubules in extracts of cultured HeLa cells and the identification of HeLa microtubules-associated proteins. Proc Natl Acad Sci USA 76: 293

    Google Scholar 

  9. Creasey WA (1979) TheVinca alkaloids: In: Haker FC (ed) Antibiotics. Springer Verlag, New York Berlin Heidelberg vol. 2, p 414

    Google Scholar 

  10. Delbarre B, Granger C, Grosse R, Wright M, Paraire M, Bizzari JP (1990) S 12363 a new vinca-alkaloid derivative inducing a particular spiralization of microtubules (abstract). Proc Am Assoc Cancer Res 31: 401

    Google Scholar 

  11. Donoso JA, Haskins KM, Himes RH (1979) Effect of microtubuleassociated proteins on the interaction of vincristine with microtubule and tubulin. Cancer Res 39: 1604

    Google Scholar 

  12. Gaskin F, Cantor CR, Shelanski ML (1974) Turbidimetric studies of the in vitro assembly and disassembly of porcine neurotubules. J Mol Biol 89: 737

    Google Scholar 

  13. Himes RH, Kersey RN, Heller-Bettinger I, Samson FE (1976) Action of the vinca alkaloids vincristine, vinblastine and desacetyl vinblastine amide (vindesine) on microtubules in vitro. Cancer Res 36: 3798

    Google Scholar 

  14. Jordan MA, Himes RH, Wilson L (1985) Comparison of the effects of vinblastine, vindesine and vinedipine on microtubule dynamics and cell proliferation in vitro. Cancer Res 45: 2741

    Google Scholar 

  15. Jordan MA, Margolis RL, Himes RH, Wilson L (1986) Identification of a distinct class of vinblastine binding sites on microtubules. J Mol Biol 187: 61

    Google Scholar 

  16. Kraus-Berthier L, Visalli M, Seurre G, Bizzari JP, Pierré A (1990) Effects of a new vinca alkaloid, S 12363, on human tumor xenografts in nude mice. Proc Am Assoc Cancer Res 31: 415

    Google Scholar 

  17. Lavielle G, Hautefaye P, Schaeffer C, Boutin JA, Cudennec CA, Pierré A (1991) New α-aminophosphonic acid derivatives of vinblastine: chemistry and antitumor activity. J Med Chem (in press)

  18. Lengsfeld AM, Dietrich J, Schultze-Maurer B (1982) Accumulation and release of vinblastine and vincristine by HeLa cells: light microscopic, cinematographic, and biochemical study. Cancer Res 42: 3798

    Google Scholar 

  19. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193: 265

    Google Scholar 

  20. Luduena RF, Fellous A, Francon J, Nunez J, McManus L (1981) Effect of tau on the vinblastine-induced aggregation of tubulin. J Cell Biol 89: 680

    Google Scholar 

  21. Luduena RF, Anderson WH, Prasad V, Jordan MA, Ferrigni KC, Roach MC, Hórówitz PM, Murphy DB, Fellous A (1986) Interactions of vinblastine and maytansine with tubulin. Ann NY Acad Sci 466: 718

    Google Scholar 

  22. MacKinlay SA, Luduena RF, Mackae TH (1986) Temperature effects on a solution of vinblastine-induced polymers assembled from brine shrimp (Artemia) tubulin. FEBS Lett 203: 301

    Google Scholar 

  23. Marantz R, Shelanski ML (1970) Structure of microtubule crystals induced by vinblastine in vitro. J Cell Biol 44: 234

    Google Scholar 

  24. Marantz R, Ventilla M, Shelanski M (1969) Vinblastine-induced precipation of microtubule protein. Science 165: 498

    Google Scholar 

  25. Marty M, Dieras V, Extra JM, Espie M, Leandri S, Besenval M, Krikorian A, Herrera A (1990) La vinorelbine (navelbine). Cahiers Cancer 2: 104

    Google Scholar 

  26. Morgan JL, Spooner BS (1983) Immunological detection of microtubule poison-induced conformational changes in tubulin. J Biol Chem 258: 13127

    Google Scholar 

  27. Na GC, Timasheff SN (1982) In vitro vinblastine-induced tubulin paracrystals. J Biol Chem 257: 10387

    Google Scholar 

  28. Nagle BW, Doenges KH, Bryan J (1977) Assembly of tubulin from cultured cells and comparison with the neurotubulin model. Cell 12: 573

    Google Scholar 

  29. Olmsted JB, Carlson K, Klebe R, Ruddle F, Rosenbaum J (1970) Isolation of microtubule protein from cultured mouse neuroblastoma cells. Proc Natl Acad Sci USA 65: 129

    Google Scholar 

  30. Owellen RJ, Hartke CA, Dickerson RM, Hains FO (1976) Inhibition of tubulin-microtubule polymerization by drugs of the vinca alkaloid class. Cancer Res 36: 1499

    Google Scholar 

  31. Pierré A, Léonce S, Anstett M, Hautefaye P, Lavielle G, Cudennec CA (1989) Cytotoxic properties of a new potent vinca-alkaloid derivative on human solid tumors in vitro. Proc Am Assoc Cancer Res 30: 581

    Google Scholar 

  32. Pierré A, Perez V, Molina M, Boutin JA, Anstett M, Lavielle G (1990) Relationships between binding to tubulin and cellular uptake and retention of S-12363. J Cancer Res Clin Oncol 116: 445

    Google Scholar 

  33. Pierré A, Lavielle G, Hautefaye P, Léonce S, Saint-Dizier D, Boutin JA, Cudennec CA (1990) Pharmacological properties of a new alpha-aminophosphonic acid derivative of vinblastine. Anticancer Res 10: 139

    Google Scholar 

  34. Pierré A, Kraus-Berthier L, Atassi G, Cros S, Poupon MF, Lavielle G, Berlion M, Bizzari JP (1991) Preclinical antitumor activity of a newVinca alkaloid derivative, S-12363. Cancer Res 51: 2312

    Google Scholar 

  35. Potier P, Guénard D, Zavala F (1979) Résultats récents dans le domaine des alcaloides antitumoraux du groupe de la vinblastine. Etudes biochimiques. C R Soc Biol (Paris) 173: 414

    Google Scholar 

  36. Prakash V, Timasheff SN (1985) Vincristine-induced self-association of calf brain tubulin. Biochemistry 24: 5004

    Google Scholar 

  37. Schiff PB, Horwitz SB (1981) Taxol assembles tubulin in the absence of exogenous guanosine 5′-triphosphate or microtubule-associated proteins. Biochemistry 20: 3247

    Google Scholar 

  38. Shelanski ML, Gaskin F, Cantor CR (1973) Microtubule assembly in the absence of added nucleotides. Proc Natl Acad Sci USA 70: 765

    Google Scholar 

  39. Starling D (1976) Two ultrastructurally distinct tubulin paracrystals induced in sea-urchin eggs by vinblastine sulfate. J Cell Biol 20: 79

    Google Scholar 

  40. Ventilla M, Cantor CR, Shelanski ML (1975) Some features of the vinblastine-induced assembly of porcine tubulin. Arch Biochem Biophys 171: 154

    Google Scholar 

  41. Wilson L, Bryan J, Ruby A, Mezia D (1970) Precipation of proteins by vinblastine and calcium ions. Proc Natl Acad Sci USA 66: 807

    Google Scholar 

  42. Wilson L, Morse A, Bryan J (1978) Characterization of acetyl-[3H]-labeled vinblastine binding to vinblastine-tubulin crystals. J Mol Biol 121: 255

    Google Scholar 

  43. Wilson L, Jordan MA, Morse A, Margolis RL (1982) Interaction of vinblastine with steady-state microtubules in vitro. J Mol Biol 159: 125

    Google Scholar 

  44. Zavala F, Guénard D, Potier P (1978) Interaction of vinblastine analogues with tubulin. Experientia 34: 1497

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wright, M., Garès, M., Verdier-Pinard, P. et al. Differential in vitro action of S-12363, a new vinblastine derivative, and of its epimer on microtubule proteins. Cancer Chemother. Pharmacol. 28, 434–440 (1991). https://doi.org/10.1007/BF00685819

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00685819

Keywords

Navigation