Skip to main content
Log in

“Superconducting” causal nets

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The world is described as a relativistic quantum neural net with a quantum condensation akin to superconductivity. The sole dynamical variable is an operator representing immediate causal connection. The net enjoys a quantum principle of equivalence implying local LorentzSL(2,C) invariance and causality. The past-future asymmetry of its cell is similar to that of the neutrino. A net phase transition is expected at temperatures on the order of theW mass rather than the Planck mass, and near gravitational singularities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexandroff, A. (1956). The space-time of the theory of relativity,Helvetical Physica Acta, Supplementum 4, 44–45.

    Google Scholar 

  • Barnabei, M., Brini, A., and Rota, G.-C. (1985). On the exterior calculus of invariant theory,Journal of Algebra 96, 120–160.

    Google Scholar 

  • Bekenstein, J. D. (1973).Physical Review D7, 2333–2346.

    Google Scholar 

  • Bergmann, P. G. (1957). Two component spinors in general relativity,Physical Review,107, 624–629.

    Google Scholar 

  • Bennett, C. H. (1973). Logical reversibility of computation,IBM Journal of Research and Development,6, 525–532.

    Google Scholar 

  • Bombelli, L., Lee, J., Meyer, D., and Sorkin, R. (1987). Spacetime as a locally finite causal set, Preprint, Department of Physics, Syracuse University.

  • Chew, G. F., and Stapp, H. P. (1987).3-space from Quantum Mechanics, Lawrence Berkeley Laboratory, preprint LBL-23595.

  • De Witt, B. S. (1964)Dynamical Theory of Groups and Fields, inRelativity, Groups and Topology, C. deWitt and B. S. deWitt, eds., Gordon and Breach, Problem No. 77.

  • Eguchi, T., Gilkey, P. B., and Hanson, A. J. (1980). Gravitation, gauge theories and differential geometry.Physics Reports,66, 213–393.

    Google Scholar 

  • Feynman, R. P., and Hibbs, A. R. (1965).Quantum Mechanics Via Path Integrals, McGraw-Hill, New York, Chapter 2; see also R. P. Feynman, Nobel Address.

    Google Scholar 

  • Finkelstein, D. (1955). Internal structure of spinning particles,Physical Review,100, 924–931.

    Google Scholar 

  • Finkelstein, D. (1958). Past-future asymmetry of the gravitational field of a point particle,Physical Review,110, 965–967.

    Google Scholar 

  • Finkelstein, D. (1969). Space-time code,Physical Review,184, 1261–1271.

    Google Scholar 

  • Finkelstein, D. (1987a). Coherent quantum logic,International Journal of Theoretical Physics,26, 109–129.

    Google Scholar 

  • Finkelstein, D. (1987b). Finite physics,The Universal Turing Machine-A Half-Century Survey, R. Herken, Kammerer & Unverzagt, Hamburg.

    Google Scholar 

  • Finkelstein, D., and Misner, C. W. (1959). New conservation laws,Annals of Physics 6, 230–243.

    Google Scholar 

  • Finkelstein, D., and Rodriguez, E. (1986). Algebras and manifolds,Physica,18D, 197–208.

    Google Scholar 

  • Finkelstein, S. R. (1987). Gravity in hyperspin manifolds, Ph.D. Thesis, School of Physics, Georgia Institute of Technology.

  • Finkelstein, S. R. (1988). Gravity in hyperspin manifolds,International Journal of Theoretical Physics, in press.

  • Fredkin, D., and Toffoli, T. (1982). Conservative logic,International Journal of Theoretical Physics,21, 219–253.

    Google Scholar 

  • Hawking, S. (1975). Particle creation by black holes,Communications in Mathematical Physics,43, 199–220.

    Google Scholar 

  • Holm, C. (1986). Christoffel formula and geodesic motion in hyperspin manifolds,International Journal of Theoretical Physics,25, 1209.

    Google Scholar 

  • Holm, C. (1987). Hyperspin structure of Einstein universes and their neutrino spectrum, Ph. D. Thesis, Georgia Institute of Technology.

  • Holm, C. (1988). The hyperspin structure of unitary groups,Journal of Mathematical Physics, in press.

  • Kronheimer, E. H., and Penrose, R. (1965). On the structure of causal spaces,Proceedings of the Cambridge Philosophical Society 63, 481.

    Google Scholar 

  • Kruskal, M. (1960). Maximal extension of Schwarzschild metric,Physical Review,119, 1743–1745.

    Google Scholar 

  • Latzer, R. W. (1972). Non-directed light signals and the structure of time,Synthese,24, 236.

    Google Scholar 

  • Misner, C. W., Thorne, K. S., and Wheeler, J. A. (1973).Gravitation, p. 1210, Freeman, San Francisco.

    Google Scholar 

  • Peano, G. (1988).Calcolo geometrico secondo l'Ausdehnungslehre di H. Grassman, Fratelli Bocea Editori, Torino.

    Google Scholar 

  • Penrose, R. (1965). Gravitational collapse and space-time singularities,Physical Review Letters,14, 57–59.

    Google Scholar 

  • Penrose, R. (1971). Angular momentum: An approach to combinatorial space-time, inQuantum Theory and Beyond, T. Bastin, ed., Cambridge University Press.

  • Pimenov, R. (1968).Spaces of Kinematic Type (Mathematical Theory of Space-Time), Nauka, Leningrad (in Russian) [English translation,Kinematic Spaces, Consultants Bureau, New York].

    Google Scholar 

  • Regge, T. (1961). General relativity without coordinates,Nuovo Cimento,29, 558–571.

    Google Scholar 

  • Robb, A. A. (1936).Geometry of Space and Time, Cambridge University Press.

  • Ruffini, R., and Wheeler, J. A. (1970). Collapse of wave to black hole,Bulletin of the American Physical Society,15, 76.

    Google Scholar 

  • Skyrme, T. H. R. (1961).Proceedings of the Royal Society of London A,260, 127.

    Google Scholar 

  • Sorkin, R. (1987). Private communication. See also Bombelliet al., 1987.

  • Susskin, L. (1977). Lattice fermions,Physical Review D,16, 3031.

    Google Scholar 

  • T'hooft, G. (1979). Quantum Gravity: A Fundamental Problem and some Radical Ideas, inRecent Developments in Gravitation. Cargese 1978, M. Lévy and S. Deser, eds., Plenum, New York.

    Google Scholar 

  • Weinberg, S. (1984). Quasi-Riemannian theories of gravitation in more than four dimensions,Physics Letters,138B, 47–51.

    Google Scholar 

  • Von Weizsäcker, C. F. (1955).Komplementarität und Logik Naturwissenschaften,19, 548.

    Google Scholar 

  • Von Weizsäcker, C. F. (1985).Aufbau der Physik, Hanser, Munich.

    Google Scholar 

  • Zeeman, C. Causality implies the Lorentz group.Journal of Mathematical Physics 5, 490–493.

  • Żenczykowski, P. (1988). Combinatorial descriptions of space and strong interactions,International Journal of Theoretical Physics,27, 9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Finkelstein, D. “Superconducting” causal nets. Int J Theor Phys 27, 473–519 (1988). https://doi.org/10.1007/BF00669395

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00669395

Keywords

Navigation