Skip to main content
Log in

Temperature compensation of circasemilunar timing in the intertidal insectClunio

  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Summary

In cultures of a subtropical population of the one-hour midgeClunio tsushimensis, semilunar rhythms of emergence with a period of 15 days can be entrained by using artificial moonlight cycles of 30 days in otherwise invariant 24-h lightdark cycles (0.3 lux over four successive nights every 30 days of LD 12∶12). After changing to an invariant photoperiod (LD 12∶12 without the moonlight programme) or even to continuous darkness, freerunning semilunar rhythms were observed for up to 3 months using cultures of a mixed age structure containing all larval instars. The mean period was 14.2 days at 19 °C, i.e. clearly shorter than under entraining conditions (14.7 days in nature, 15.0 days with the artificial zeitgeber). In the range 14°–24 °C (corresponding to the mean seawater temperatures at the place of origin in winter and summer) there was only slight temperature dependence. The Q10 of the circasemilunar period, however, was not significantly different from 1.0. In continuous darkness the freerunning period was about 15.2 days. Both experiments provide supporting evidence for the existence of a temperature-compensated circasemilunar oscillator acting as an endogenous clock mechanism controlling the timing of imaginal disc formation and pupation in the intertidal chironomid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aschoff J (1979) Circadian rhythms: influences of internal and external factors on the period measured in constant conditions. Z Tierpsychol 49:225–249

    Google Scholar 

  • Blake GM (1959) Control of diapause by an ‘internal clock’ inAnthrenus verbasci (L.) (Col., Dermestidae). Nature 183:126–127

    Google Scholar 

  • Bünning E (1958) Über den Temperatureinfluß auf die endogene Tagesperiodik, besonders beiPeriplaneta americana. Biol Zbl 77:141–152

    Google Scholar 

  • Bünning E, Müller D (1961) Wie messen Organismen lunare Zyklen? Z Naturforsch 16b:391–395

    Google Scholar 

  • Franke HD (1985) On a clocklike mechanism timing lunarrhythmic reproduction inTyposyllis prolifera (Polychaeta). J Comp Physiol A 156:553–561

    Google Scholar 

  • Hauenschild C (1960) Lunar perodicity. Cold Spring Harbor Symp Quant Biol 25:491–497

    Google Scholar 

  • Krüger M, Neumann D (1983) Die Temperaturabhängigkeit semilunarer und diurnaler Schlüpfrhythmen bei der intertidalen MückeClunio marinus (Diptera, Chironomidae). Helgol Meeresunters 36:427–464

    Google Scholar 

  • Neumann D (1966) Die lunare und tägliche Schlüpfperiodik der MückeClunio. Steuerung und Abstimmung auf die Gezeitenperiodik. Z Vergl Physiol 53:1–61

    Google Scholar 

  • Neumann D (1981) Tidal and lunar rhythms. In: Aschoff J (ed) Biological rhythms. Plenum, New York, pp 351–380 (Handbook of behavioral neurobiology, vol 4)

    Google Scholar 

  • Neumann D (1985) Photoperiodic influences of the moon on behavioral and developmental performances of organisms. Int J Biometeorol 29 [Suppl 2]:165–177

    Google Scholar 

  • Neumann D (1986) Life cycle strategies of an intertidal midge between subtropic and arctic latitudes. In: Taylor F, Karban R (eds) The evolution of insect life cycles. Springer, Berlin Heidelberg New York, p 3–19

    Google Scholar 

  • Oka H, Hashimoto H (1959) Lunare Periodizität in der Fortpflanzung einer pazifischen Art vonClunio (Diptera, Chironomidae). Biol Zbl 78:545–559

    Google Scholar 

  • Pittendrigh CS (1954) On temperature independence in the clock system controlling emergence time inDrosophila. Proc Natl Acad Sci USA 40:1018–1029

    Google Scholar 

  • Pittendrigh CS (1981) Circadian systems: General perspective. In: Aschoff J (ed) Biological rhythms. (Handbook of behavioral neurobiology, vol 4). Plenum, New York, pp 57–80

    Google Scholar 

  • Pittendrigh CS, Calderola PC (1973) General homeostasis of the frequency of circadian oscillations. Proc Natl Acad Sci 70:2697–2701

    Google Scholar 

  • Sweeney BM, Hastings JW (1960) Effects of temperature upon diurnal rhythms. Cold Spring Harbor Symp Quant Biol 25:87–104

    Google Scholar 

  • Truman JW (1972) Circadian rhythms and physiology with special reference to neuroendocrine processes in insects. In: Bierhuizen JF et al. (orgs) Proceedings of the international symposium on circadian rhythmicity, Centre Agricultural Publishing and Documentation, Wageningen, pp 111–135

    Google Scholar 

  • Wülker W, Götz P (1968) Die Verwendung der Imaginalscheiben zur Bestimmung des Entwicklungszustandes vonChironomus-Larven (Dipt.) Z Morphol Tiere 62:363–388

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. Colin S. Pittendrigh on the occasion of his 70th birthday, in recognition of his leading and stimulating contributions in the field of biological timing systems

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neumann, D. Temperature compensation of circasemilunar timing in the intertidal insectClunio . J. Comp. Physiol. 163, 671–676 (1988). https://doi.org/10.1007/BF00603851

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00603851

Keywords

Navigation