Skip to main content
Log in

Calcium and lanthanum effects at the nodal membrane

  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Summary

  1. 1.

    Voltage clamp experiments on single myelinated nerve fibres ofXenopus were done in Ringer solutions, in which the normal Ca concentration (2 mM) was substituted by 10 mM Ca2+, 0.1 mM La3+ or 0.5 mM La3+.

  2. 2.

    The activation and the inactivation curves of the Na permeability were shifted by 11 and 8 mV in positive direction on the potential axis by an e-fold increase in concentration of either Ca2+ or La3+.

  3. 3.

    These shifts were plotted versus the logarithm of the Ca or La concentration and could be fitted by straight lines under the assumption that 1 mM La3+ is equivalent to 55 mM Ca2+.

  4. 4.

    The activation curve of the K permeability was shifted 6 or 14 mV by an e-fold change in Ca or La concentration.

  5. 5.

    In high Ca and in the La solutions the maximum Na and K permeability and the leakage conductance were reduced.

  6. 6.

    Ringer solution with 0.1 mM Tb3+ exerted an even stronger effect than 0.1 mM La3+.

  7. 7.

    It is assumed that the observed shifts reflect a change in membrane surface potential due to electrostatic screening by the cations of the external solution. On this basis a negative fixed charge density of approximately 1/70 Å2 is calculated for the vicinity of the Na channel; a lower density appears to apply near the K channel.

  8. 8.

    As some of the La effects cannot be interpreted in terms of screening or binding and are different from the Ca effects, La seems to be a potent Ca substituent with some specific effects in addition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armstrong, C. M., Bezanilla, F., Rojas, E.: Destruction of sodium conductance inactivation in squid axons perfused with pronase. J. gen. Physiol.62, 375–391 (1973)

    Google Scholar 

  • Bergman, C., Dubois, J. M.: Réévaluation des effets du calcium sur la perméabilité au potassium de la membrane nodale de la fibre myélinisée. C. R. Acad. Sci. (Paris)275, 987 D (1972)

    Google Scholar 

  • Blaustein, M. P., Goldman, D. E.: The action of certain polyvalent cations on the voltage-clamped lobster axon. J. gen. Physiol.51, 279–291 (1968)

    Google Scholar 

  • Brismar, T.: Effects of ionic concentration on permeability properties of nodal membrane in myelinated nerve fibres of Xenopus laevis. Potential clamp experiments. Acta physiol. scand.87, 474–484 (1973)

    Google Scholar 

  • Brismar, T., Frankenhaeuser, B.: The effect of calcium on the potassium permeability in the myelinated nerve fibre of Xenopus laevis. Acta physiol. scand.85, 237–241 (1972)

    Google Scholar 

  • Brodowsky, H., Strehlow, H.: Zur Struktur der elektrochemischen Doppelschicht. Z. Elektrochem.63, 262–269 (1959)

    Google Scholar 

  • Chandler, W. K., Hodgkin, A. L., Meves, H.: The effect of changing the internal solution on sodium inactivation and related phenomena in giant axons. J. Physiol. (Lond.)180, 821–836 (1965)

    Google Scholar 

  • Cole, K. S.: Dynamic electrical characteristics of the squid axon membrane. Arch. Sci. physiol.3, 253–258 (1949)

    Google Scholar 

  • D'Arrigo, J. S.: Possible screening of surface charges on crayfish axons by polyvalent metal ions. J. Physiol. (Lond.)231, 117–128 (1973)

    Google Scholar 

  • Dodge, F. A.: A study of ionic permeability changes underlying excitation in myelinated nerve fibres of the frog. Thesis. New York: The Rockefeller University 1963

    Google Scholar 

  • Dodge, F. A., Frankenhaeuser, B.: Membrane currents in isolated frog nerve fibre under voltage clamp conditions. J. Physiol (Lond.)143, 76–90 (1958)

    Google Scholar 

  • Drouin, H., The, R.: The effect of reducing extracellular pH on the membrane currents of the Ranvier node. Pflügers Arch.313, 80–88 (1969)

    Google Scholar 

  • Dubois, J. M., Bergman, C.: Conductance sodium de la membrane nodale: inhibition compétitive calcium-sodium. C. R. Acad. Sci. (Paris)272, 2924–2927 (1971)

    Google Scholar 

  • Frankenhaeuser, B.: The effect of calcium on the myelinated nerve fibre. J. Physiol. (Lond.)137, 245–260 (1957)

    Google Scholar 

  • Frankenhaeuser, B.: Steady state inactivation of sodium permeability in myelinated nerve fibres of Xenopus laevis. J. Physiol. (Lond.)148, 671–676 (1959)

    Google Scholar 

  • Frankenhaeuser, B.: Delayed currents in myelinated nerve fibres of Xenopus laevis investigated with voltage clamp technique. J. Physiol. (Lond.)160, 40–45 (1962)

    Google Scholar 

  • Frankenhaeuser, B.: A quantitative description of potassium currents in myelinated nerve fibres of Xenopus laevis. J. Physiol. (Lond.)169, 424–430 (1963)

    Google Scholar 

  • Frankenhaeuser, B., Hodgkin, A. L.: The action of calcium on the electrical properties of squid axons. J. Physiol. (Lond.)137, 218–244 (1957)

    Google Scholar 

  • Frankenhaeuser, B., Huxley, A. F.: The action potentials in the myelinated nerve fibre of Xenopus laevis as computed on the basis of voltage clamp data. J. Physiol. (Lond.)171, 302–315 (1964)

    Google Scholar 

  • Frankenhaeuser, B., Meves, H.: The effect of magnesium and calcium on the frog myelinated nerve fibre. J. Physiol. (Lond.)142, 360–365 (1958)

    Google Scholar 

  • Gilbert, D. L., Ehrenstein, G.: Effect of divalent cations on potassium conductance of squid axons: determination of surface charge. Biophys. J.9, 447–463 (1969)

    Google Scholar 

  • Goldman, D. E.: Potential, impedance, and rectification in membranes. J. gen. Physiol.27, 37–60 (1943)

    Google Scholar 

  • Grahame, D. C.: The electrical double layer and the theory of electrocapillarity. Chem. Rev.41, 441–501 (1947)

    Google Scholar 

  • Hartz, T., Ulbricht, W.: Comparison of the effects of calcium and lanthanum on the crayfish giant axon. Pflügers Arch.345, 281–294 (1973)

    Google Scholar 

  • Haydon, D. A.: The electrical double layer and electrokinetic phenomena. Rec. Progr. Surface Sci.1, 94–158 (1964)

    Google Scholar 

  • Hille, B.: Charges and potentials at the nerve surface. Divalent ions and pH. J. gen. Physiol.51, 221–236 (1968)

    Google Scholar 

  • Hille, B.: The permeability of the sodium channel to organic cations in myelinated nerve. J. gen. Physiol.58, 599–619 (1971)

    Google Scholar 

  • Hodgkin, A. L., Huxley, A. F.: The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J. Physiol. (Lond.)116, 497–506 (1952a)

    Google Scholar 

  • Hodgkin, A. L., Huxley, A. F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond.)117, 500–544 (1952b)

    Google Scholar 

  • Hodgkin, A. L., Katz, B.: The effect of sodium ions on the electrical activity of the giant axon of the squid. J. Physiol. (Lond.)108, 37–77 (1949)

    Google Scholar 

  • Koppenhöfer, E.: Die Wirkung von Tetraäthylammoniumchlorid auf die Membranströme Ranvierscher Schnürringe von Xenopus laevis. Pflügers Arch. ges. Physiol.293, 34–55 (1967)

    Google Scholar 

  • Machne, X., Orozco, R.: Electrical properties of axons of Callinectes sapidus. Amer. J. Physiol.219, 1147–1153 (1970)

    Google Scholar 

  • McLaughlin, S. G. A., Szabo, G., Eisenman, G.: Divalent ions and the surface potential of charged phospholipid membranes. J. gen. Physiol.58, 667–687 (1971)

    Google Scholar 

  • Meves, H., Vogel, W.: Calcium inward currents in internally perfused giant axons. J. Physiol. (Lond.)235, 225–265 (1973)

    Google Scholar 

  • Moore, J. W., Narahashi, T., Ulbricht, W.: Sodium conductance shift in an axon internally perfused with a sucrose and low potassium solution. J. Physiol. (Lond.)172, 163–173 (1964)

    Google Scholar 

  • Moore, L. E.: Effect of temperature and calcium ions on rate constants of myelinated nerve. Amer. J. Physiol.221, 131–137 (1971)

    Google Scholar 

  • Mozhayeva, G. N., Naumov, A. P.: Effect of surface charge on the steady state potassium conductance of nodal membrane. Nature (Lond.)228, 164–165 (1970)

    Google Scholar 

  • Mozhayeva, G. N., Naumov, A. P.: Potassium conductance of the Ranvier node membrane in the presence of La3+, Zn2+ and Cu2+ ions in the media. Tsitologia15, 1431–1435 (1973)

    Google Scholar 

  • Schwarz, J. R., Vogel, W.: Potassium inactivation in single myelinated nerve fibres of Xenopus laevis. Pflügers Arch.330 61–73 (1971)

    Google Scholar 

  • Stämpfli, R.: Intraaxonal iodate inhibits sodium inactivation. Experientia (Basel) (in press) (1974)

  • Stern, O.: Zur Theorie der elektrolytischen Doppelschicht. Z. Elektrochem.30, 508–516 (1924)

    Google Scholar 

  • Takata, M., Pickard, W. F., Lettvin, J. Y., Moore, J. W.: Ionic conductance changes in lobster axon membranes when lanthanum is substituted for calcium. J. gen. Physiol.50, 461–472 (1966)

    Google Scholar 

  • Ulbricht, W.: Some effects of calcium ions on the action potential of single nodes of Ranvier. J. gen. Physiol.48, 113–127 (1964)

    Google Scholar 

  • Vogel, W.: Lanthanum effect on the sodium permeability of the nodal membrane. Pflügers Arch.339, R69 (1973a)

    Google Scholar 

  • Vogel, W.: Effect of lanthanum at the nodal membrane. Experientia (Basel)29, 1517 (1973b)

    Google Scholar 

  • Woodhull, A. M.: Ionic blockage of sodium channels in nerve. J. gen. Physiol.61, 687–708 (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the Deutsche Forschungsgemeinschaft.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vogel, W. Calcium and lanthanum effects at the nodal membrane. Pflugers Arch. 350, 25–39 (1974). https://doi.org/10.1007/BF00586736

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00586736

Key words

Navigation