Skip to main content
Log in

Measurements of the perivascular PO2 in the vicinity of the pial vessels of the cat

  • Heart, Circulation, Respiration and Blood; Environmental and Exercise Physiology
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

\(P_{O_2 } \) 's in the environment of the pial microvessels of the cat were measured using recessed tip oxygen microelectrodes. Measurements were made on the surface of vessels with internal diameters ranging from 200μm to 22μm. Blood oxygen partial pressures were also measured inside these vessels by penetrating the vessels with sharpened electrodes. Both intravascular and extravascular\(P_{O_2 } \) values decreased progressively from the large arterial vessels down to the small arterioles. The observed values of intravascular\(P_{O_2 } \) showed a systematic longitudinal decrease from 98.5±10.7 (SEM) mm Hg in the largest vessels down to 72.6±3.6 mm Hg in the smallest vessels. In addition to the longitudinal gradient, a transmural gradient was observed across the walls of the microvessels. The difference between blood\(P_{O_2 } \) and vessel surface\(P_{O_2 } \) was 27.0±2.5 mm Hg in the largest vessels and 6.0±2.2 in the smallest. The mean wall thickness in these groups of vesseis were 27.0±1.5 and 7.5±0.8 μm respectively. Measurements of the minimum tissue\(P_{O_2 } \) on the exposed surface of the cortex yielded a value of 25.4±6.6 mm Hg. Systemic arterial partial pressure of oxygen averaged 94.7±4.7 mm Hg. The data indicate that significant gradients for oxygen exist both longitudinally and radially in association with the pial vessels. The longitudinal gradients represent losses of oxygen from the precapillary vessels. The transmural gradients are apparently the result of both consumption by the microvessel wall and diffusional gradients due to oxygen flux into the extravascular space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baez, S.: Recording of microvascular dimensions with an imagesplitter television microscope. J. Appl. Physiol.211, 299–301 (1966)

    Google Scholar 

  2. Betz, E., Wünnenberg, W.: Anpassungsvorgänge der Gehirndurchblutung an Sauerstoffmangel. Arch. Physik. Therapie16, 45–55 (1964)

    Google Scholar 

  3. Cook, B. H., Granger, H. J., Taylor, A. E.: Metabolism of coronary arteries and arterioles. A histochemical study. Microvasc. Res.14, 145–159 (1977)

    Google Scholar 

  4. Davies, P. W., Bronk, D. W.: Oxygen tension in mammalian brain. Fed. Proc.16, 689–692 (1969)

    Google Scholar 

  5. Duling, B. R., Berne, R. M.: Longitudinal gradients in periarteriolar oxygen tension. A possible mechanism for the participation of oxygen in local regulation of blood flow. Circ. Res.27, 669–678 (1970)

    Google Scholar 

  6. Grote, J., Kreuscher, R., Schubert, R., Russ, H. J.: New studies on the influence of\(P_a {\text{O}}_2\) and\(P_a {\text{CO}}_2\) on regional and total cerebral blood flow. 6th European Conference on the Microcirculation, pp. 294–297. Basel: Karger 1971

    Google Scholar 

  7. Guyton, A. C., Ross, J. M., Carrier, O., Walker, J. R.: Evidence for tissue oxygen demand as the major factor causing autoregulation. Circ. Res.14/15 (Suppl. 1) I60-I68 (1964)

    Google Scholar 

  8. Herbert, D. A., Mitchell, R. A.: Blood gas tensions and acid-base balance in awake cats. J. Appl. Physiol.30, 434–437 (1971)

    Google Scholar 

  9. Howard, R. O., Richardson, D. W., Smith, M. H., Patterson, J. L.: Oxygen consumption of arterioles and venules as studied in the Cartesian diver. Circ. Res.16, 187–196 (1965)

    Google Scholar 

  10. Kety, S. S., Schmidt, C. F.: The effects of altered arterial tensions of carbon dioxide and oxygen on cerebral blood flow and oxygen consumption of normal young men. J. Clin. Invest.27, 484–492 (1948)

    Google Scholar 

  11. Kontos, H. A., Wet, E. P., Raper, A. J., Rosenblum, W. I., Navari, R. M., Patterson, J. L.: Role of tissue hypoxia in local regulation of cerebral microcirculation. Am. J. Physiol.234, H582-H591 (1978)

    Google Scholar 

  12. Kosan, R. L., Burton, A. C.: Oxygen consumption of arterial smooth muscle as a function of active tone and passive stretch. Circ. Res.18, 79–88 (1966)

    Google Scholar 

  13. Lassen, N. A.: Control of cerebral circulation in health and disease. Circ. Res.34, 749–760 (1974)

    Google Scholar 

  14. Leniger-Follert, E., Lübbers, D. W., Wrabetz, W.: Regulation of local tissue\(P_{O_2 } \) of the brain cortex at different arterial O2 pressures. Pflügers Arch.359, 81–96 (1975)

    Google Scholar 

  15. Lübbers, D. W.: The oxygen pressure field in the brain and its significance for the normal and critical oxygen supply of the brain. In: Oxygen transport in blood and tissue (D. W. Lübbers, U. C. Luft, G. Thews, E. Witzleb, eds.), pp. 67–92. Berlin, Heidelberg, New York: Springer 1968

    Google Scholar 

  16. Pittman, R. N., Duling, B. R.: Effects of altered carbon dioxide tension on hemoglobin oxygenation in hamster cheek pouch microvessels. Microvasc. Res.13, 211–224 (1977)

    Google Scholar 

  17. Severinghaus, J. W., Lassen, N.: Step hypocapnia to separate arterial from tissue\(P_{{\text{CO}}_2 }\) in the regulation of cerebral blood flow. Circ. Res.20, 272–278 (1967)

    Google Scholar 

  18. Silver, I. A.: Some observations on the cerebral cortex with an ultramicro, membrane-covered, oxygen electrode. Med. Electron. Biol. Engn.3, 377–387 (1965)

    Google Scholar 

  19. Stosseck, K.: Hydrogen exchange through the pial vessel wall and its meaning for the determination of the local cerebral blood flow. Pflügers Arch.320, 111–119 (1970)

    Google Scholar 

  20. Whalen, W. J., Canfield, R., Nair, P.: Effects of breathing O2 or O2+CO2 and of the injection of neurohumors on the\(P_{O_2 } \) of cat cerebral cortex. Stroke1, 194–200 (1970)

    Google Scholar 

  21. Whalen, W. J., Riley, J., Nair, P.: A microelectrode for measuring intracellular\(P_{O_2 } \). J. Appl. Physiol.23, 798–801 (1967)

    Google Scholar 

  22. Wiederhielm, C. A.: Distensibility characteristics of small blood vessels. Fed. Proc.24, 1075–1084 (1965)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by grants from: The Von Humboldt Foundation, Federal Republic of Germany; United States Public Health Service No. NHLBI-12792; and the Deutsche Forschungsgemeinschaft

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duling, B.R., Kuschinsky, W. & Wahl, M. Measurements of the perivascular PO2 in the vicinity of the pial vessels of the cat. Pflügers Arch. 383, 29–34 (1979). https://doi.org/10.1007/BF00584471

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00584471

Key words

Navigation