Skip to main content
Log in

Release of adenosine, inosine and hypoxanthine from the isolated guinea pig heart during hypoxia, flow-autoregulation and reactive hyperemia

  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Summary

In an attempt to test the hypothesis whether adenosine is involved in the regulation of coronary flow, adenosine, inosine and hypoxanthine were measured in the effluent perfusate and in the tissue of isolated guinea pig hearts under various experimental conditions. In addition, the release of14C-adenosine,14C-inosine and14C-hypoxanthine was determined after prelabeling cardiac adenine nucleotides with14C-adenine.

The decrease in coronary resistance induced by hypoxic perfusion (30% and 20% in the gas phase) and during autoregulation was associated with a considerable increase in the release of adenosine, inosine and hypoxanthine. Under both conditions the concentrations of adenosine in the effluent perfusate were clearly within the coronary vasodilating range of exogenously administered adenosine. The tissue content of adenosine also increased significantly when the perfusion pressure was reduced. The release of14C-adenosine closely paralleled the changes in coronary resistance during hypoxic perfusion, autoregulation and during reactive hyperemia. The specific activity of adenosine in the effluent perfusate, however, decreased substantially upon reduction of the oxygen supply to the heart, indicating that the release of14C-adenosine does not provide an absolute measure of total adenosine release by the heart.

Our data indicate that the greater part of the adaptive changes of vascular resistance during hypoxia and autoregulation can be attributed to adenosine which is formed at an enhanced rate under these conditions. However, other factors might be involved as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berne, R. M.: Cardiac nucleotides in hypoxia: possible role in regulation of coronary blood flow. Amer. J. Physiol.204, 317–322 (1963)

    Google Scholar 

  2. Berne, R. M., Rubio, R., Duling, B. R., Wiedmeier, V. T.: Effects of acute and chronic hypoxia on coronary blood flow. Advanc. Cardiol5, 56–66 (1970)

    Google Scholar 

  3. Bünger, R., Haddy, F. J., Querengässer, A., Gerlach, E.: An isolated guinea pig heart preparation with in vivo like features. Pflügers Arch.353, 317–326 (1975)

    Google Scholar 

  4. Gerlach, E., Deuticke, B., Dreisbach, R. H.: Der Nucleotid-Abbau im Herzmuskel bei Sauerstoffmangel und seine mögliche Bedeutung für die Coronardurchblutung. Naturwissenschaften50, 228–229 (1963)

    Google Scholar 

  5. Granger, H. J., Shepherd, A. P.: Intrinsic microvascular control of tissue oxygen delivery. Microvasc. Res.5, 49–72 (1973)

    Google Scholar 

  6. Guyton, A. C., Ross, J. M., Carrier, O., Walker, J. R.: Evidence for tissue oxygen demand as a major factor causing autoregulation. Circulat. Res. (Suppl. I)14, 60–80 (1964)

    Google Scholar 

  7. Haddy, F. J., Scott, J. B.: Metabolically linked chemicals in local regulation of blood flow. Physiol. Rev.48, 688–707 (1968)

    Google Scholar 

  8. Haddy, F. J., Scott, J. B.: Metabolic factors in peripheral circulatory regulation. Fed. Proc.34, 2004–2011 (1975)

    Google Scholar 

  9. Johnson, P. C.: Review of previous studies and current theories of autoregulation. Circulat. Res. (Suppl. I)14, 1–9 (1964)

    Google Scholar 

  10. Katory, M., Berne, R. M.: Release of adenosine from anoxic hearts. Circulat. Res.19, 420–425 (1966)

    Google Scholar 

  11. Mosher, P., Ross, J., McFate, P. A., Shaw, R. F.: Control of coronary blood flow by an autoregulatory mechanism. Circulat. Res.14, 250–259 (1964)

    Google Scholar 

  12. Olsson, R. A.: Changes in content of purine nucleosides in canine myocardium during coronary occlusion. Circulat. Res.26, 301–306 (1970)

    Google Scholar 

  13. Olsson, R. A.: Myocardial reactive hyperemia. Circulat. Res.37, 263–270 (1975)

    Google Scholar 

  14. Rubio, R., Berne, R. M.: Release of adenosine by the normal myocardium in dogs and its relation to the regulation of coronary resistance. Circulat. Res.25, 407–415 (1969)

    Google Scholar 

  15. Rubio, R., Berne, R. M., Katori, M.: Release of adenosine in reactive hyperemia of the dog heart. Amer. J. Physiol.216, 56–62 (1969)

    Google Scholar 

  16. Rubio, R., Wiedemeier, V. T., Berne, R. M.: Nucleoside-phosphorylase: localisation and role in the myocardial distribution of purines. Amer. J. Physiol.122, 550–555 (1972)

    Google Scholar 

  17. Rubio, R., Wiedmeier, V. T., Berne, R. M.: Relationship between coronary flow and adenosine production and release. J. Molec. Cell. Cardiol.6, 561–566 (1974)

    Google Scholar 

  18. Schrader, J., Gerlach, E.: Compartmentation of cardiac adenine nucleotides and formation of adenosine. Pflügers Arch.367, 129–135 (1976)

    Google Scholar 

  19. Snow, J. A., Olsson, R. A., Gentry, M. K.: Myocardial: blood purine nucleoside concentration ratios in canine myocardium. In: Current topics in coronary research (C. M. Bloor and R. A. Olsson, eds.). New York-London: Plenum Press 1973

    Google Scholar 

  20. Wiedmeier, V. T., Rubio, R., Berne, R. M.: Incorporation and turnover of adenosine-U-14C in perfused guinea pig myocardium. Amer. J. Physiol.223, 51–54 (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

A preliminary report of these studies was given at the VI. Annual Meeting of the “International Study Group for Research in Cardiac Metabolism”, Freiburg i. Br., September 1973 and appeared in “Recent advances in studies on cardiac structure and metabolism”, Vol. 7, Editors: P. Harris, R. J. Bing, and A. Fleckenstein, pp. 171–175. Urban & Schwarzenberg 1976

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schrader, J., Haddy, F.J. & Gerlach, E. Release of adenosine, inosine and hypoxanthine from the isolated guinea pig heart during hypoxia, flow-autoregulation and reactive hyperemia. Pflugers Arch. 369, 1–6 (1977). https://doi.org/10.1007/BF00580802

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00580802

Key words

Navigation