Skip to main content
Log in

High-temperature hydrogen permeability of vanadium and niobium

  • Published:
Materials Science Aims and scope

Abstract

We develop a technique for measuring the coefficient of hydrogen diffusion in metals of group V based on an electricaly conductivity method. By using this technique, we measured the coefficient of hydrogen diffusion in vanadium and niobium in the temperature range 573 – 1373 K and calculated the hydrogen permeability of metals of group V. A high-temperature phase transition caused by hydrogen dissolution was discovered in this work for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. W. M. Müller, J. P. Blackledge, and G. G. Libowitz (editors),Metal Hydrides [Russian translation], Atomizdat, Moscow (1973).

    Google Scholar 

  2. B. A. Kolachev,Hydrogen Brittleness of Nonferrous Metals [in Russian], Metallurgiya, Moscow (1966).

    Google Scholar 

  3. N. A. Galaktionova,Hydrogen in Metals [in Russian], Metallurgiya, Moscow (1966).

    Google Scholar 

  4. E. Veleskis and R. K. Edwards, “Thermodynamic properties in the systems vanadium-hydrogen, niobium-hydrogen, and tantalum-hydrogen,”J. Phys. Chem. 73, 683–692 (1969).

    Google Scholar 

  5. G. Shaumann, J. Völkl, and G. Alefeld, “Diffusion coefficients of hydrogen and deuterium,”Phys. Stat. Solidi 42, 401–407 (1970).

    Google Scholar 

  6. D. W. Rudd, D. W. Vose, and S. Johnson, “The permeability of niobium to hydrogen,”J. Phys. Chem. 66, 351–353 (1962).

    Google Scholar 

  7. R. Barrer,Diffusion in and through Solids [Russian translation], Inostr. Lit., Moscow (1948).

    Google Scholar 

  8. R. E. Stickney, “Diffusion and permeation of hydrogen isotopes in fusion reactors: A survey,” in:Chemistry of Fusion Technology, New York (1972), pp. 241–320.

  9. V. V. Fedorov, O. R. Sokolovs'kyi, and V. I. Pokhmurs'kyi,Application of the of Electrical Conductivity Method to the Determination of the Coefficient of Hydrogen Diffusion in Metals [in Russian], Preprint No. 121, Karpenko Physicomechanical Institute, Ukrainian Academy of Sciences, L'viv (1987).

    Google Scholar 

  10. S. I. Mykytyshyn, V. V. Fedorov, O. M. Sergienko, et al., “Determination of the coefficient of hydrogen diffusion in metals from the rate of change of the electrical resistance under desorption,”Fiz.-Khim. Mekh. Mater. 21, No. 1, 24–26 (1985).

    Google Scholar 

  11. V. V. Fedorov and B. F. Kachmar, “Determination of the temperature limits for the existence of a solid solution of hydrogen in metals of group V by the electrical conductivity method,”Zh. Fiz. Khim., No. 11, 2921–2923 (1980).

    Google Scholar 

  12. R. I. Van'kovich, B. F. Kachmar, I. I. Sidorak, et al., “Installation for measuring nonstationary flows of hydrogen through membranes,”Fiz.-Khim. Mekh. Mater. 7, No. 6, 99–100 (1971).

    Google Scholar 

  13. O. R. Sokolovskii, V. V. Fedorov, I. I. Sidorak, et al., “Determination of the coefficient of hydrogen diffusion in niobium by the electrical conductivity method,” in:Interaction of Hydrogen with Metals. Abstracts of the 6th All-Union School on Problems of Nuclear and Fusion Power Engineering and Technology [in Russian], Sverdlovsk (1989), pp. 136–137.

  14. J. Völkl and G. Alefeld, “Hydrogen diffusion in metals,” in:Hydrogen in Metals. I. Basic Properties [Russian translation], Mir, Moscow (1981), pp. 379–408.

    Google Scholar 

  15. V. M. Katlinskii, “Investigation of diffusion in hydride phases of titanium-subgroup metals,”Izv. Akad. Nauk SSSR, Neorg. Mater., No. 4, 1674–1677 (1978).

    Google Scholar 

  16. Yu. V. Levinskii,Phase Diagrams for Gas-Metal Systems [in Russian], Metallurgiya, Moscow (1975).

    Google Scholar 

  17. T. Namba, H. Miyaguchi, M. Yamawaci, and M. Kanno, “Hydrogen permeation through vanadium and the effect of surface impurity layer on it,”J. Nucl. Mater. 105, 318–325 (1982).

    Google Scholar 

  18. M. Yamawaci and T. Namba, “Effect of argon ion sputtering of the surface on hydrogen permeation through vanadium,”Nucl. Sci. Techn. 20, 405–413 (1983).

    Google Scholar 

  19. R. R. Heinrich, C. E. Johnson, and C. E. Crouthamel, “Vanadium as a hydrogen electrode in a lithium hydride cell,”J. Electr. Soc. 112, 1071–1073 (1965).

    Google Scholar 

  20. E. H. Van Deventer, T. A. Renner, R. H. Pelto, and V. A. Maroni, “Effect of surface impurity layers on the hydrogen permeability of vanadium,”J. Nucl. Mater. 64, 241–248 (1977).

    Google Scholar 

  21. G. Shaumann and J. Völkl, “Diffusion coefficients of hydrogen and deuterium,”Phys. Stat. Solidi 42, 401–407 (1970).

    Google Scholar 

  22. V. V. Fedorov and O. R. Sokolovskii, “High-temperature hydrogen permeability of niobium,” in:Interaction of Hydrogen with Metals. Abstracts of the 6th All-Union School on Problems of Nuclear and Fusion Power Engineering and Technology [in Russian], Sverdlovsk (1989), pp. 151–152.

  23. V. I. Pokhmurs'kyi, V. V. Fedorov, I. I. Sidorak, et al., “Physicochemical problems of hydrogen-niobium interaction at elevated temperatures,” in:Abstracts of the 8th All-Union Conference on Colloid Chemistry and Physicochemical Mechanics [in Russian], Tashkent (1983), pp. 139–141.

  24. On the Phenomenon of Controlled Hydrogen-Phase Riveting, Information Letter of the Donetsk Polytechnical Institute, Donetsk (1979).

  25. R. Sherman and H. K. Birnbaum, “Hydrogen permeation and diffusion in niobium,”Met. Trans. A14, 203–209 (1983).

    Google Scholar 

  26. M. Yamawaci, T. Namba, T. Kiyoshi, and M. Kanno, “Surface effect on hydrogen permeation through niobium,”J. Nucl. Mater. 123, 1573–1578 (1984).

    Google Scholar 

  27. V. A. Somenkov and S. Sh. Shil'shtein,Phase Transformations of Hydrogen in Metals [in Russian], Kurchatov Institute of Atomic Energy, Moscow (1978).

    Google Scholar 

  28. G. Alefeld, “Wasserstoff in Metallen als Beispiel für ein Gittergas mit Phasenumwandlungen,”Phys. Stat. Solidi 32, 67–80 (1969).

    Google Scholar 

  29. R. A. Andrievskii and Ya. S. Umanskii,Interstitial Phases [in Russian], Metallurgiya, Moscow (1977).

    Google Scholar 

  30. T. Schöber and H. Wenzel, “Systems Nb-H(D), Ta-H(D), and V-H(D): Structure, diagrams, morphology, preparation methods,” in: G. Alefeld and J. Völkl (editors),Hydrogen in Metals. II. Application-Oriented Properties [Russian translation], Mir, Moscow (1981), pp. 17–90.

    Google Scholar 

  31. R. M. Gabidullin, B. A. Kolachev, and E. V. Krasnova, “Thermodynamic analysis of the dissolution of hydrogen and the interaction between hydrogen atoms in metals,”Izv. Vyssh. Uchebn. Zaved., Tsvet. Metallurg., No. 6, 98–102 (1978).

    Google Scholar 

Download references

Authors

Additional information

Karpenko Physicomechanical Institute, Ukrainian Academy of Sciences, L'viv. Translated from Fiziko-Khimicheskaya Mekhanika Materialov, Vol. 30, No. 4, pp. 15–24, July – August, 1994.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pokhmurs'kyi, V.I., Sokolovs'kyi, O.R. & Fedorov, V.V. High-temperature hydrogen permeability of vanadium and niobium. Mater Sci 30, 410–418 (1995). https://doi.org/10.1007/BF00558832

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00558832

Keywords

Navigation