Skip to main content
Log in

Structural relaxation in amorphous Fe40Ni40P14 B6 studied by energy dispersive X-ray diffraction

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The atomic structure and the structural relaxation of amorphous Fe40Ni40P14B6 alloy were studied using the energy dispersive X-ray diffraction method. It was demonstrated that the structure of the amorphous alloy can be determined self-consistently with high accuracy by this method. The results indicated that the structural relaxation is a highly collective process involving many atoms, and can be described in terms of the redistribution and transformation of the structural defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Duwez,Ann. Rev. Mater. Sci. 6 (1976) 83

    Google Scholar 

  2. J. J. Gilman,Phys. Today 28 (1975) 46.

    Google Scholar 

  3. T. Egami, P. J. Flanders andC. D. Graham Jr.,AIP Conf. Proc. 24 (1975) 697.

    Google Scholar 

  4. F. E. Luborsky, J. J. Becker andR. O. McCary,IEEE Trans. Mag. MAG-11 (1975) 1644.

    Google Scholar 

  5. C. D. Graham Jr.,T. Egami, R. S. Williams andY. Takei,AIP Conf. Proc. 29 (1976) 218.

    Google Scholar 

  6. M. H. Cohen andD. Turnbull,J. Chem. Phys. 31 (1959) 1164.

    Google Scholar 

  7. Idem, ibid. 34 (1961) 120.

    Google Scholar 

  8. F. Spaepen andD. Turnbull, in ″Rapidly Quenched Metals″, edited by N. J. Grant and B. C. Giessen (MIT Press, Cambridge, 1976) p. 205.

    Google Scholar 

  9. M. Goldstein, in ″Modern Aspects of the Vitreous State″, edited byJ. D. Mackenzie, Vol. 3 (Butterworth, Washington, 1964) p. 90.

    Google Scholar 

  10. S. E. Petrie, in ″Polymeric Materials″, (American Society for Metals, Metals Park, 1975) p. 55.

    Google Scholar 

  11. A. J. Kovacs, R. A. Stratton andJ. D. Ferry,J. Phys. Chem. 67 (1963) 152.

    Google Scholar 

  12. H. Eyring,J. Chem. Phys. 4 (1936) 283.

    Google Scholar 

  13. H. S. Chen, H. J. Leamy andM. Barmatz,J. Non-Cryst. Solids 5 (1970) 444.

    Google Scholar 

  14. T. Soshiroda, M. Koiwa andT. Masumoto,ibid. 22 (1976) 173.

    Google Scholar 

  15. B. S. Berry, in ″Metallic Glasses″, edited by H. J. Leamy and J. J. Gilman (American Society for Metals, Metals Park, 1978) p. 161.

    Google Scholar 

  16. H. S. Chen andE. Coleman,Appl. Phys. Lett. 28 (1976) 245.

    Google Scholar 

  17. R. S. Williams andT. Egami,IEEE Trans Mag. MAG-12 (1976) 927.

    Google Scholar 

  18. R. Maddin andT. Masumoto,Mater. Sci. Eng. 9 (1972) 153.

    Google Scholar 

  19. Y. Waseda andT. Masumoto,Z. Physik B22 (1975) 121.

    Google Scholar 

  20. J. F. Craczyk,J. Appl. Phys. 49 (1978) 1738.

    Google Scholar 

  21. Details of the production process of the Metglas alloys are not published, but are believed to be similar to the one described byH. H. Liebermann andC. D. Graham Jr.,IEEE Trans. Mag. MAG-12 (1976) 921.

    Google Scholar 

  22. T. Egami,Mater. Res. Bull. 13 (1978) 557.

    Google Scholar 

  23. H. H. Liebermann, C. D. Graham Jr. andP. J. Flanders,IEEE Trans. Mag. MAG-13 (1977) 1541.

    Google Scholar 

  24. B. C. Giessen andG. E. Gordon,Science 159 (1968) 973

    Google Scholar 

  25. J. M. Prober andJ. M. Schultz,J. Appl. Cryst. 8 (1975) 405.

    Google Scholar 

  26. H. P. Klug andL. E. Alexander, ″X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials″, 2nd edition (John Wiley, New York 1974).

    Google Scholar 

  27. ″International Tables for X-ray Crystallography″, Vol. 3 and 4 (The Kynoch Press, Birmingham, 1962, 1974).

  28. D. T. Cromer andD. Lieberman, Los Alamos Scientific Laboratory Report, LA-4403 (1970).

  29. L. G. Parratt andC. F. Hempstead,Phys. Rev. 94 (1954) 1593.

    Google Scholar 

  30. D. T. Cromer andJ. B. Mann,J. Chem. Phys. 47 (1967) 1892.

    Google Scholar 

  31. D. T. Cromer ibid. 50 (1969) 4857.

    Google Scholar 

  32. B. E. Warren, ″X-Ray Diffraction″ (Addison-Wesley, Reading, Mass, 1969).

    Google Scholar 

  33. T. Ichikawa,Phys. Stat. Sol. a29 (1975) 293.

    Google Scholar 

  34. G. S. Cargill, in ″Solid State Physics″, edited by Ehrenreich, F. Seitz and D. Turnbull, Vol. 30 (Academic Press, New York, 1975) p. 227.

    Google Scholar 

  35. Y. Waseda, H. Okazaki, M. Naka andT. Masumoto,Sci. Rep. RITU A26 (1976) 12.

    Google Scholar 

  36. T. Egami andT. Ichikawa,Mater. Sci. Eng. 32 (1978) 293.

    Google Scholar 

  37. J. M. Roberts andN. Brown,Acta Met. 11 (1963) 7

    Google Scholar 

  38. W. Kauzmann,Trans. AIME 143 (1941) 57.

    Google Scholar 

  39. N. F. Mott,Phil. Mag. 44 (1953) 742.

    Google Scholar 

  40. A. Seeger,Z. Naturforsch 9a (1954) 758.

    Google Scholar 

  41. D. Gupta, K. N. Tu, andK. W. Asai,Phys. Rev. Lett.,35 (1975) 796.

    Google Scholar 

  42. L. A. Davis, R. Ray, C. P. Chou andR. C. O'handley Script. Met. 10 (1976) 541.

    Google Scholar 

  43. T. Egami,J. Amer. Ceramic Soc. 60 (1977) 128.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by NSF through Grant DMR 75-15633 and MRL Grant DMR 76-80994

Rights and permissions

Reprints and permissions

About this article

Cite this article

Egami, T. Structural relaxation in amorphous Fe40Ni40P14 B6 studied by energy dispersive X-ray diffraction. J Mater Sci 13, 2587–2599 (1978). https://doi.org/10.1007/BF00552688

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00552688

Keywords

Navigation