Skip to main content
Log in

Integral-equation solution for half planes bonded together or in contact and containing internal cracks or holes

Zur Integralgleichungsmethode bei verbundenen oder sich berührenden Halbebenen mit Rissen oder Löchern

  • Published:
Ingenieur-Archiv Aims and scope Submit manuscript

Summary

The complex potentials Φ(z) and Ψ(z) describing the stress-field due to a concentrated force, or a dislocation, applied at some point at the interior of either of the half planes bonded together, or being under some kind of contact between them, are calculated. By using these potentials as Green's functions we have reduced the problem of crack and/or holes existing in either of these half-planes to an integral equation along the cracks or holes. The advantage of the method is that the integral equation along the interface between the two half-planes (y=0) is canceled out. Thus, the numerical evaluation of the state of stress is considerably reduced and simplified. The respective integral equations corresponding to some characteristic cases of bimaterial plates were derived. Finally, examples of cracked half-planes, either stressor displacement-free, or bonded with other half-planes, indicated the potentialities of the method.

Übersicht

Komplexe Potentiale Φ(z) und Ψ(z) werden berechnet. Sie beschreiben das Intensitätsfeld, das von einer Einzelkraft oder von einer Versetzung hervorgerufem wird. Diese Potentiale werden angewandtauf einige Punkte innerhalb jeder der Halbebenen, die auf verschiedene Art und Weise miteinander verbunden sein können. Bei Verwendung dieser Potentiale in Form von Greenschen Funktionen haben wir das Problem der Risse und/oder der Löcher, die in jeder Halbebene enthalten sind, auf eine Integralgleichung für diese Risse oder Löcher reduziert. Der Vorteil dieser Methode ist der, daß dabei die Integralgleichung, angewandt auf die Grenzfläche zwischen den beiden Halbebenen (y = 0), überflüssig wird. Somit wird die numerische Berechnung des Intensitätszustandes weitgehend vereinfacht.

Es wurden die betreffenden Integralgleichungen hergeleitet, die einigen charakteristischen Fällen von zweimaterialigen Platten entsprechen. Die Beispiele von rißenthaltenden Halbebenen, jede von ihnen intensitäts- oder versetzungsfrei oder verbunden mit anderen Halbebenen, zeigen die Leistungsfähigkeit dieser Methode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Buckner, H. F.: Some Stress Singularities and Their Computation by Means of Integral Equations in Boundary Problems in Differential Equations. Madison: Univ. Wisconsin Press 1960, pp. 215–230

    Google Scholar 

  2. Kalandiya, A. I.: Mathematical Methods of Two-Dimensional Elasticity. Moscow: Mir 1975, pp. 243 to 262

    Google Scholar 

  3. Frasier, J. T.; Rongved, L.: Force in the Plane of Two Joined Semi-Infinite Plates. J. of Appl. Mech. 24 (1957) 582–585

    Google Scholar 

  4. Sneddon, I. N.: The Transmission of Force Between Two Half-Planes. J. Elasticity 2 (1972) 283–295

    Google Scholar 

  5. Gupta, S. C.: Effect of Concentrated Force on a Crack in Dissimilar Media. J. Indian Inst. Sci. 58 (1976) 370–386

    Google Scholar 

  6. Mura, T.: Mathematical Theory of Dislocations. Am. Soc. Mech. Eng. (1969) 25–48.

  7. Ioakimidis, N. I.; Theocaris, P. S.: A System of Curvilinear Cracks in an Isotropic Elastic Half-Plane. Int. J. Fract. 15 (1979) 299–309

    Google Scholar 

  8. Theocaris, P. S.; Tsamasphyros, G.: Numerical Solution of Systems of Singular Integral Equations with Variable Coefficients. Appl. Anal. 9 (1979) 37–52

    Google Scholar 

  9. Muskhelishvili, N. I.: Some Basic Problems of the Mathematical Theory of Elasticity. Groningen: P. Noordhoff 1953

    Google Scholar 

  10. Cook, T. S.; Erdogan, F.: Stress in Bonded Materials with a Crack Perpendicular to the Interface Int. J. Engng. Sci. 10 (1972) 677–697

    Google Scholar 

  11. Erdogan, F.; Aksogan, O.: Bonded Half Planes Containing an Arbitrarily Oriented Crack. Int. J Solids Struct. 10 (1974) 569–585

    Google Scholar 

  12. Ashbaugh, N.: Stress Solution for a Crack at an Arbitrary Angle to an Interface. Int. J. Fract. 11 (1975) 205–219

    Google Scholar 

  13. Theocaris, P. S.: On the Numerical Solution of Cauchy-Type Singular Integral Equations. Serdica, Bulgaricae Math. Publ. 2 (1976) 252–275

    Google Scholar 

  14. Tsamasphyios, G.; Theocaris, P. S.: Méthode Générale de Quadrature des Intégrales du Type Cauchy. Rev. Roum. Sci. Techn.-Méc. Appl. 25 (1980) 839–856

    Google Scholar 

  15. Theocaris, P. S.: The Order of Singularity at a Multi-Wedge Corner of a Composite Plate. Int. J. Engng. Sci. 12 (1974) 107–120

    Google Scholar 

  16. Theocaris, P. S.; Tsamasphyros, G. J.: On the Solution of Boundary-Value Problems in Plane Elasticity for Multiply-Connected Regions (I. The Second Boundary-Value Problem). Lett. Appl. Engng. Sci. 3 (1975) 167–176

    Google Scholar 

  17. Theocaris, P. S.; Tsamasphyros, G. J.: Sur une Méthode de Résolution du deuxième Problème aux Limites. Arch. Mech. 30 (1978) 3–15

    Google Scholar 

  18. Theocaris, P. S.; Ioakimidis, N. I.: Mode I Stress Intensity Factors at Corner Points in Plane Elastic Media. Eng. Fract. Mech. 13 (1980) 699–708

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsamasphyros, G., Theocaris, P.S. Integral-equation solution for half planes bonded together or in contact and containing internal cracks or holes. Ing. arch 53, 225–241 (1983). https://doi.org/10.1007/BF00532243

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00532243

Keywords

Navigation