, Volume 7, Issue 5, pp 393-397

Trehalose: Its role in germination of Saccharomyces cerevisiae

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Summary

Mutants with specific lesions were used to differentiate between the functions of glycogen and trehalose in S. cerevisiae. Diploids which harbor the glc1/glc1 mutation depend upon the phosphorylated, less active form of glycogen synthase and show a more active, phosphorylated form, of the enzyme trehalase. These conditions are due to a lesion in the regulating subunit of the cAMP-dependent protein kinase. Such cells are unable to sporulate. Diploids which contain the sst1/sst1 mutation have normal glycogen metabolism but their trehalose-6-phosphate synthase is not active. Such strains sporulate but germination is poor and only one-spore tetrads are formed. These results confirm that glycogen is needed to trigger sporulation while trehalose plays a role in the germination process. Different systems, I and II, of trehalose accumulation were proposed. System I would require the UDPG-linked trehalose synthase, whereas system II would constitute an alternative pathway, specifically induced or activated by the expression of a MAL gene. The presence of system II in its constitutive form in the constructed diploids would favour trehalose synthesis during growth on glucose, however, it did not overcome the glycogen deficiency during sporulation nor the lack of trehalose for germination. It seems that only system I, namely trehalose 6-P-synthase, plays a role in the germination process.