Skip to main content
Log in

Glycine betaine reverses the effects of osmotic stress on DNA replication and cellular division in Escherichia coli

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The accumulation of glycine betaine to a high internal concentration by Escherichia coli cells in high osmolarity medium restores, within 1 h, a subnormal growth rate. The experimental results support the view that cell adaptation to high osmolarity involves a decrease in the initiation frequency of DNA replication via a stringent response; in contrast, glycine betaine transport and accumulation could suppress the stringent response within 1–2 min and restore a higher initiation frequency. High osmolarity also triggers the cells to lengthen, perhaps via an inhibition of cellular division; glycine betaine also reverses this process. It is inferred that turgor could control DNA replication and cell division in two separate ways. Glycine betaine action is not mediated by K+ ions as the internal level of K+ ions is not modified significantly following glycine betaine accumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Barron A, May G, Bremer E, Villarejo M (1986) Regulation of envelope protein composition during adaptation to osmotic stress in Escherichia coli. J Bacteriol 167:433–438

    Google Scholar 

  • Cairney J, Booth IR, Higgins CF (1985a) Osmoregulation of gene expression in Salmonella typhimurium: pro U encodes an osmotically induced betaine transport system. J Bacteriol 164:1224–1232

    Google Scholar 

  • Cairney J, Booth IR, Higgins CF (1986b) Salmonella typhimurium pro P gene encodes a transport system for the osmoprotectant betaine. J Bacteriol 164:1088–1093

    Google Scholar 

  • Carl PL (1970) Escherichia coli mutants with temperature-sensitive synthesis of DNA. Mol Gen Genet 109:107–122

    Google Scholar 

  • Christian JGB (1955) The influence of nutrition on the water relations of Salmonella oranienburg. Aust J Biol Sci 8:75–82

    Google Scholar 

  • Clark D, Parker J (1984) Proteins induced by high osmotic pressure in Escherichia coli. FEMS Microbiol Lett 25:81–83

    Google Scholar 

  • Csonka LN (1981) Proline over-production results in enhanced osmotolerance in Salmonella typhimurium. Mol Gen Genet 182:82–86

    Google Scholar 

  • Csonka LN (1982) A third l-proline permease in Salmonella typhimurium which functions in media of elevated osmotic strength. J Bacteriol 151:1433–1443

    Google Scholar 

  • Epstein W, Schultz SG (1965) Cation transport in Escherichia coli. V. Regulation of cation content. J Gen Physiol 49:221–234

    Google Scholar 

  • Gallant JA (1979) Stringent control in Escherichia coli. Ann Rev Genet 13:393–415

    Google Scholar 

  • Girija R, Ikenaka K, Inouye M (1985) Uncoupling of osmoregulation of the Escherichia coli K-12 omp F gene from omp B-dependent transcription. J Bacteriol 163:82–87

    Google Scholar 

  • Glass RE, Jones S, Ishihama A (1986) Genetic studies on the β subunit of Escherichia coli RNA polymerase. VII. RNA polymerase is a target for ppGpp. Mol Gen Genet 203:265–268

    Google Scholar 

  • Gowrishankar Y (1985) Identification of osmo-responsive genes of Escherichia coli: evidence for participation of potassium and proline transport systems in osmoregulation. J Bacteriol 164:434–445

    Google Scholar 

  • Hecker M, Schroeter A, Mach F (1983) Replication of pBR 322 DNA in stringent and relaxed strains of Escherichia coli. Mol Gen Genet 190:355–357

    Google Scholar 

  • Jackson BJ, Kennedy EP (1983) The biosynthesis of membrane-derived oligosaccharides. A membrane-bound phosphoglycerol transferase. J Biol Chem 258:2394–2398

    Google Scholar 

  • Kawaji H, Mizuno T, Mizushima S (1979) Influence of molecular size and osmolarity of sugars and dextrans on the synthesis of outer membrane proteins 0-8 and 0-9 of Escherichia coli K-12. J Bacteriol 140:843–847

    Google Scholar 

  • Ken-Dror S, Preger R, Avi-Dor Y (1986) Role of betaine in the control of respiration and osmoregulation of a halotolerant bacterium. FEMS Microbiol Rev 39:115–120

    Google Scholar 

  • Kennedy EP (1982) Osmotic regulation and the biosynthesis of membrane-derived oligosaccharides. Proc Natl Acad Sci USA 79:1092–1095

    Google Scholar 

  • Koch A, Higgins MC, Doyle R (1981) Surface tension-like forces determine bacterial shapes: Streptococcus faecium. J Bacteriol 147:97–100

    Google Scholar 

  • Koch A (1984) Shrinkage of growing Escherichia coli cells by osmotic challenge. J Bacteriol 159:919–924

    Google Scholar 

  • Kogut M, Russel NJ (1984) Growth and phospholipid composition of a moderately halophilic bacterium during adaptation to changes in salinity. Curr Microbiol 10:95–98

    Google Scholar 

  • Kubitschek HE, Freedman ML, Silver S (1971) Potassium uptake in synchronous and synchronized cultures of Escherichia coli. Biophys J 11:787–795

    Google Scholar 

  • Laffler T, Gallant JA (1974) A new genetic locus involved in the stringent response in Escherichia coli. Cell 1:27–30

    Google Scholar 

  • Lebail S (1979) Transport du K+ au cours du cycle cellulaire chez Escherichia coli. Thesis, Université de Paris

  • Legros M, Kepes A (1985) One-step fluorometric microassay of DNA in procaryotes. Anal Biochem 147:497–502

    Google Scholar 

  • Le Rudulier D, Valentine RC (1982) Genetic engineering in agriculture: osmoregulation. TIBS 7:431–433

    Google Scholar 

  • Le Rudulier D, Bouillard L (1983) Glycine betaine, an osmotic effector in Klebsiella pneumoniae and other members of the Enterobacteriaceae. Appl Environ Microbiol 46:152–159

    Google Scholar 

  • Le Rudulier D, Strom AR, Dandekar AM, Smith LT, Valentine RC (1984) Molecular biology of osmoregulation. Science 224:1064–1068

    Google Scholar 

  • Lin-Chao S, Bremer H (1986) Effect of rel A function on the replication of plasmid pBR322 in Escherichia coli. Mol Gen Genet 203:150–153

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randal RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    Google Scholar 

  • Meury J (1976) Potassium transport in Escherichia coli. Thesis, Université de Paris

  • Meury J, Robin A, Monier-Champex P (1985) Turgor-controlled fluxes and their pathways in Escherichia coli. Eur J Biochem 151:613–619

    Google Scholar 

  • Miller KJ, Kennedy EP, Reinhold VN (1986) Osmotic adaptation by Gram-negative bacteria: possible role for periplasmic oligosaccharides. Science 231:48–51

    Google Scholar 

  • Munro GF, Bell CA (1973) Effects of external osmolarity on phospholipid metabolism in Escherchiaa coli B. J Bacteriol 166:257–262

    Google Scholar 

  • Olijhoek AJM, Van Eden CG, Trueba F, Pas E, Anninga N (1982) Plasmolysis during the division cycle of Escherichia coli. J Bacteriol 152:479–484

    Google Scholar 

  • Perroud B, Le Rudulier D (1985) Glycine betaine transport in Escherichia coli. Osmotic modulation. J Bacteriol 161:393–401

    Google Scholar 

  • Roth W, Leckie M, Dietzler D (1985a) Osmotic stress drastically inhibits active transport of carbohydrates by Escherichia coli. Biochem Biophys Res Commun 126:434–441

    Google Scholar 

  • Roth W, Porter S, Leckie M, Porter B, Dietzler D (1985b) Restoration of cell volume and the reversal of carbohydrate transport and growth inhibition of osmotically upshocked Escherichia coli. Biochem Biophys Res Commun 126:442–449

    Google Scholar 

  • Russel NJ, Kogut M (1985) Haloadaptation: salt sensing and cell-envelope changes. Microbiol Sci 11:345–350

    Google Scholar 

  • Thiam K, Farve A (1984) Role of the stringent response in the expression and mechanism of near-ultraviolet induced growth delay. Eur J Biochem 145:137–142

    Google Scholar 

  • Villarejo M, Davis J, Granett S (1983) Osmoregulation of Alkaline phosphatase synthesis in Escherichia coli K-12. J Bacteriol 156:975–978

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meury, J. Glycine betaine reverses the effects of osmotic stress on DNA replication and cellular division in Escherichia coli . Arch. Microbiol. 149, 232–239 (1988). https://doi.org/10.1007/BF00422010

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00422010

Key words

Navigation