Skip to main content
Log in

Cloned mitochondrial DNA from the zygomycete Absidia glauca promotes autonomous replication in Saccharomyces cerevisiae

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

We have cloned fragments from mitochondrial and chromosomal DNA of the zygomycete Absidia glauca in Saccharomyces cerevisiae using the ARS selection vector YIp5. Though it has not been possible to select ARS elements from chromosomal DNA, we succeeded in isolating two clones of mitochondrial origin that support autonomous replication in bakers' yeast. DNA from these plasmids has been shown to hybridize with mitochondrial DNA from both mating types. Generation times of the transformed yeast strain in selective medium are around 20 h. In liquid minimal medium only 6% of the cells contain the plasmid; in complete medium a mitotic stability of 50% has been determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alvarez MI, Pelaez MI, Eslava AP (1980) Mol Gen Genet 179: 445–452

    Google Scholar 

  • Ballance DJ, Buxton FP, Turner G (1983) Biochem Biophys Res Commun 112:284–289

    Google Scholar 

  • Banks G (1983) Curr Genet 7:79–84

    Google Scholar 

  • Birnboim HC, Doly J (1979) Nucleic Acids Res 7:1513–1523

    Google Scholar 

  • Botstein D, Falco SC, Steward SE, Brennan M, Scherer S, Stinchcomb DT, Struhl K, Davis RW (1979) Gene 8:17–24

    Google Scholar 

  • Boyer HW, Roulland-Dussoix D (1969) J Mol Biol 41:459–472

    Google Scholar 

  • Broach JR, Li YY, Feldman J, Jayaram M, Abraham J, Nasmyth KA, Hicks JB (1983) Cold Spring Harbor Symp Quant Biol 47:1165–1173

    Google Scholar 

  • Case ME, Schweizer M, Kushner SR, Giles NH (1979) Proc Natl Acad Sci USA 76:5259–5263

    Google Scholar 

  • Celniker SE, Sweder K, Srienc F, Bailey JE, Campbell JL (1984) Mol Cell Biol 4:2455–2466

    Google Scholar 

  • Cihlar RL, Sypherd PS (1982) J Bacteriol 151:521–523

    Google Scholar 

  • Clewell DB, Helinski DR (1969) Proc Natl Acad Sci USA 62:1159–1166

    Google Scholar 

  • Cohen S, Chang ACY, Hsu L (1972) Proc Natl Acad Sci USA 69:2110–2114

    Google Scholar 

  • Colman A, Byers MJ, Primrose SB, Lyons A (1978) Eur J Biochem 91:303–310

    Google Scholar 

  • Dewar R, Katayama C, Sypherd PS, Cihlar RL (1985) J Bacteriol 162:438–440

    Google Scholar 

  • Eslava AP, Alvarez MI, Delbrück M (1975) Proc Natl Acad Sci USA 72:4076–4080

    Google Scholar 

  • Garber RC, Yoder OC (1983) Anal Biochem 135:416–422

    Google Scholar 

  • Geiser M, Döring HP, Wöstemeyer J, Behrens U, Tillmann E, Starlinger P (1980) Nucleic Acids Res 8:6175–6188

    Google Scholar 

  • Heeswijck R van, Roncero MIG (1984) Carlsberg Res Commun 49:691–702

    Google Scholar 

  • Hinnen A, Hicks JB, Fink GR (1978) Proc Natl Acad Sci USA 75:1929–1933

    Google Scholar 

  • Hsu WH, Magee PT, Magee BB, Reddy CA (1983) J Bacteriol 154:1033–1039

    Google Scholar 

  • Humphreys GO, Willshaw GA, Anderson ES (1975) Biochim Biophys Acta 383:457–463

    Google Scholar 

  • James FR, Gauger W (1982) Mycologia 74:744–751

    Google Scholar 

  • Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, p 431

    Google Scholar 

  • Morris DW, Noti JD, Osborne FA, Szalay AA (1981) DNA 1:27 to 36

    Google Scholar 

  • Panet A, van de Sande JH, Loewen PC, Khorana HG, Raae AJ, Lillehaug JR, Kleppe K (1973) Biochemistry 12:5045–5049

    Google Scholar 

  • Plempl M (1962) Planta 58:509–520

    Google Scholar 

  • Roth GE, Blanton HM, Hager LJ, Zakian VA (1983) Mol Cell Biol 3:1898–1908

    Google Scholar 

  • Sherman F, Fink GR, Lawrence CR (1972) Manual for a course: methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, p 55

    Google Scholar 

  • Skatrud PL, Queener SW (1984) Curr Genet 8:155–163

    Google Scholar 

  • Stahl U, Lemke PA, Tudzynski P, Esser K (1980) Mol Gen Genet 178:639–646

    Google Scholar 

  • Southern EM (1975) J Mol Biol 98:503–517

    Google Scholar 

  • Stahl U, Tudzynski P, Kück U, Esser K (1982) Proc Natl Acad Sci USA 79:3641–3645

    Google Scholar 

  • Stinchcomb DT, Thomas M, Kelly J, Selker E, Davis EW (1980) Proc Natl Acad Sci USA 77:4559–4563

    Google Scholar 

  • Struhl K, Stinchcomb DT, Scherer S, Davis RW (1979) Proc Natl Acad Sci USA 76:1035–1039

    Google Scholar 

  • Struhl K (1983) Nature (London) 305:391–397

    Google Scholar 

  • Thikomirova LP, Kryukow VM, Strizhov NI, Bayev AA (1983) Mol Gen Genet 189:479–484

    Google Scholar 

  • Tschumper G, Carbon J (1980) Gene 10:157–166

    Google Scholar 

  • Tudzynski P, Esser K (1982) Curr Genet 6:153–158

    Google Scholar 

  • Vallet JM, Rochaix JD (1985) Curr Genet 9:321–324

    Google Scholar 

  • Werkman BA (1976) Arch Microbiol 109:209–213

    Google Scholar 

  • Wöstemeyer J (1985) Eur J Biochem 146:443–448

    Google Scholar 

  • Wurtz T, Jockusch H (1978) Mol Gen Genet 159:249–257

    Google Scholar 

  • Yelton MM, Timberlake WE, van den Hondel CAMJJ (1985) Proc Natl Acad Sci USA 82:834–838

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burmester, A., Wöstemeyer, J. Cloned mitochondrial DNA from the zygomycete Absidia glauca promotes autonomous replication in Saccharomyces cerevisiae . Curr Genet 10, 435–441 (1986). https://doi.org/10.1007/BF00419870

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00419870

Key words

Navigation