Skip to main content
Log in

Drying and sintering of sol-gel derived large SiO2 monoliths

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

This review article summarizes the development of drying and sintering techniques for the production of sol-gel derived, large silica glass components. Gels may be synthesized using particulate or metal alkoxide precursors, or both in combination. Rapid fracture-free drying has been achieved easily with particulate gels because of their large pore size (100–6000 Å). Alkoxide gels, which generally have small pores (<200 Å), were initially difficult to dry without cracking. However, recent studies have shown that large alkoxide gel monoliths can also be dried in reasonably short times (<10 days). During subsequent heat treatment, alkoxide gels tend to have high shrinkage rates, which may cause trapping of hydroxyl ions or organic groups remaining on the gel surface. Although the removal of these species is easier for particulate gels, their large pore size necessitates heating above 1400°C to achieve full consolidation. Sintering at such temperatures was observed to deteriorate glass quality, through crystallization, warping, and/or sagging. Extensive optimization of the entire process has shown that on a laboratory scale, high-optical-quality glass can be produced from both alkoxide and particulate gels. It remains to be seen whether sol-gel process will be feasible for the manufacture of high-quality glass products on a commercial scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.B. MacChesney and D.J. DiGiovanni, J. Am. Ceramic Soc. 73, 3537 (1990).

    Google Scholar 

  2. C.J. Brinker and G.W. Scherer, Sol-Gel Science (Academic Press, New York, 1990).

    Google Scholar 

  3. S. Wang, F. Kirkbir, S. Ray Chaudhuri and A. Sarkar, in Sol-Gel Optics, edited by J.D. Mackenzie (SPIE—The International Society for Optical Engineering, Washington, 1992), vol. 1758, p. 113.

    Google Scholar 

  4. G.W. Scherer and D.M. Smith, J. Non-Crystalline Solids 189, 197 (1995).

    Article  Google Scholar 

  5. A.V. Rao, G.M. Pajonk, and N.N. Parvathy, J. Sol-Gel Sci. Techn. 3, 205 (1994).

    Google Scholar 

  6. D. Meyers, F. Kirkbir, H. Murata, S. Ray Chaudhuri, and A. Sarkar, to be published (1995).

  7. G.W. Scherer, in Better Ceramics Through Chemistry III, edited by C.J. Brinker, D.E. Klark, and D.R. Ulrich (Mater. Res. Soc. Symp. Proc., Pittsburgh, Pennsylvania, 1988), vol. 121, p. 179.

  8. S. Hæreid, J. Anderson, M.A. Einarsrud, D.W. Hua, and D.M. Smith, J. Non-Crystalline Solids 185, 221 (1995).

    Article  Google Scholar 

  9. D. Avnir and V.R. Kaufman, J. Non-Crystalline Solids 92, 180 (1987).

    Google Scholar 

  10. S. Luo and K. Tian, J. Non-Crystalline Solids 100, 254 (1988).

    Article  Google Scholar 

  11. M. Tarasevich, Ceram. Bull. 63, 500 (1984) (abstract only).

    Google Scholar 

  12. N.De La Rosa-Fox, L. Esquivias, and J. Zarzycki, J. Mater. Sci. Lett. 10, 1237 (1991).

    Google Scholar 

  13. J. Zarzycki, in Ultrastructure Processing of Advanced Ceramics, edited by D.R. Uhlmann and D.R. Ulrich (Wiley, New York, 1992), p. 135.

    Google Scholar 

  14. L. Esquivias and J. Zarzycki, in Ultrastructure Processing of Advanced Ceramics, edited by J.D. Mackenzie and D.R. Ulrich (Wiley, New York, 1988), p. 255.

    Google Scholar 

  15. T. Katagiri and T. Maekawa, J. Non-Crystalline Solids 134, 183 (1991).

    Article  Google Scholar 

  16. F. Kirkbir, H. Murata, D. Meyers, S. Ray Chaudhuri and A. Sarkar, J. Non-Crystalline Solids 178, 284 (1994).

    Article  Google Scholar 

  17. L.C. Klein, T.A. Gallo, and G.J. Garvey, J. Non-Crystalline Solids 63, 23 (1984).

    Article  Google Scholar 

  18. M. Yamane, S. Aso, and T. Sakaino, J. Mater. Sci. 13, 865 (1978).

    Google Scholar 

  19. S. Hæreid, M.A. Einarsrud, and G.W. Scherer, J. Sol-Gel Sci. Tech. 3, 199 (1994).

    Google Scholar 

  20. H. Murata, F. Kirkbir, D.E. Meyers, S. Ray Chaudhuri, and A. Sarkar, in Sol-Gel Optics III, edited by J.D. Mackenzie (SPIE—The International Society for Optical Engineering, Washington, 1994), vol. 2288, p. 709.

    Google Scholar 

  21. L.L. Hench, F.G. Araujo, J.K. West, and G.P.La Torre, J. Sol-Gel Sci. and Tech. 2, 647 (1994).

    Google Scholar 

  22. M. Yamane, in Sol-Gel Technology for Thin Films, Fibers, Preforms, Electronics and Speciality Shapes, edited by L.C. Klein (Noyes Publications, Park Ridge, New Jersey, 1988), p. 200.

    Google Scholar 

  23. S. Liu and L.L. Hench, in Sol-Gel Optics II, edited by J.D. Mackenzie (SPIE—The International Society for Optical Engineering, Washington, 1992), vol. 1758, p. 14.

    Google Scholar 

  24. G.W. Scherer, J. Non-Cryst. Solids 100, 77 (1988).

    PubMed  Google Scholar 

  25. R.K. Iler, The Chemistry of Silica (John Wiley and Sons, New York, 1979).

    Google Scholar 

  26. P.J. Davis, C.J. Brinker, and D.M. Smith, J. Non-Crystalline Solids 142, 189 (1992).

    Google Scholar 

  27. J.K. West, R. Nikles, and G. Lattore, in Better Ceramics Through Chemistry III, edited by C.J. Brinker, D.E. Clark, and D.R. Ulrich (Mater. Res. Soc. Symp. Proc., Pittsburgh, PA, 1988), vol. 121, p. 219.

  28. G.W. Scherer, J. Non-Cryst. Solids 109, 183 (1989).

    Article  Google Scholar 

  29. T. Mizuno, H. Nagata, and S. Manabe, J. Non-Cryst. Solids 100, 236 (1988).

    Article  Google Scholar 

  30. P.J. Davis, C.J. Brinker, D.M. Smith, and R.A. Assink, J. Non-Crystalline Solids 142, 197 (1992).

    Google Scholar 

  31. E.J.A. Pope, Y. Sano, S. Wang, and A. Sarkar, U.S. Patent 5, 023, 208 (1991).

  32. M.A. Einarsrud and S. Hæreid, International Patent, WO92/20623 (1992).

  33. M.A. Einarsrud and S. Hæreid, J. Sol-Gel Sci. Tech. 2, 903 (1994).

    Google Scholar 

  34. P.G. Simpkins, D.W. Johnson, and D.A. Fleming, J. Am. Ceram. Soc. 72, 1816 (1989).

    Google Scholar 

  35. J. Zarzycki, M. Prassas, and J. Phalippou, J. Mater. Sci. 17, 3371 (1982).

    Google Scholar 

  36. S. Wallace and L.L. Hench, in Better Ceramics Through Chemistry I, edited by C.J. Brinker, D.E. Clark, and D.R. Ulrich (Elsevier Science Publishing, Amsterdam, 1984), vol. 32, p. 47.

    Google Scholar 

  37. T. Adachi and S. Sakka, J. Mater. Sci. 22, 4407 (1987).

    Google Scholar 

  38. L. Artaki, T.W. Zerda, and J. Jonas, Mater. Lett. 3, 493 (1985).

    Article  Google Scholar 

  39. G. Orcel, J. Phalippou, and L. Hench, J. Non-Crystalline Solids 104, 170 (1988).

    Google Scholar 

  40. G. Orcel, L.L. Hench, I. Artaki, J. Jonas, and T.W. Zerda, J. Non-Crystalline Solids 105, 223 (1988).

    Google Scholar 

  41. T. Adachi and S. Sakka, J. Non-Crystalline Solids 99, 118 (1988).

    Google Scholar 

  42. B.M. Mitsyuk, Z.Z. Vysotskii, and M.V. Polyakov, Kokl. Akad. Nauk SSSR, 155 [6], 416 (1964) (Eng. Trans.).

    Google Scholar 

  43. D.J. Stein, A. Maskara, S. Hæreid, J. Anderson, and D.M. Smith, in Better Ceramics Through Chemistry VI, edited by A.K. Cheetham, C.J. Brinker, M.A. Mecartney, and C. Sanchez (Mat. Res. Soc., Pittsburgh, Pennsylvania, 1994), vol. 346, p. 643.

    Google Scholar 

  44. R. Deshpande, D. Hua, D.M. Smith, and C.J. Brinker, J. Non-Crystalline Solids 144, 32 (1992).

    Google Scholar 

  45. R. Deshpande, D.M. Smith, and C.J. Brinker, U.S. Patent Application (1992).

  46. D.M. Smith, D. Stein, J.M. Anderson, and W. Ackerman, J. Non-Crystalline Solids 186, 104 (1995).

    Google Scholar 

  47. S.A. Pardenek, J.W. Fleming, and L.C. Klein, in Ultrastructure Processing of Advanced Ceramics, edited by J.D. Mackenzie and D.R. Ulrich (Wiley, New York, 1988), p. 379.

    Google Scholar 

  48. J. Zarzycki, J. Non-Crystalline Solids 100 359 (1988).

    Google Scholar 

  49. G.W. Scherer, in Better Ceramics Through Chemistry I, edited by C.J. Brinker, D.E. Klark, and D.R. Ulrich (Elsevier Science Publishing, Amsterdam, 1984), vol. 32, p. 205.

    Google Scholar 

  50. G.W. Scherer and J.C. Luong, J. Non-Crystalline Solids 63, 163 (1984).

    Google Scholar 

  51. R. Clasen, J. Non-Crystalline Solids 89, 335 (1987).

    Google Scholar 

  52. R.D. Shoup, in Colloid and Interface Science, edited by M. Kerker (Academic Press, New York, 1976), vol. 3, p. 63.

    Google Scholar 

  53. R.D. Shoup, in Ultrastructure Processing of Advanced Ceramics, edited by J.D. Mackenzie and D.R. Ulrich (Wiley, New York, 1988), p. 347.

    Google Scholar 

  54. R.D. Shoup, J. Ceram, Soc. Bull. 70, 1505 (1991).

    Google Scholar 

  55. E.M. Rabinovich, D.W. Johnson, J.B. MacChesney, and E.M. Vogel, J. Am. Ceramic Soc. 66, 683 (1983).

    Google Scholar 

  56. D.W. Johnson, E.M. Rabinovich, J.B. MacChesney, and E.M. Vogel, J. Am. Ceramic Soc. 66, 688 (1983).

    Google Scholar 

  57. D.W. Johnson, J.B. MacChesney, and E.M. Rabinovich, U.S. Patent, 4, 605, 428 (1986).

    Google Scholar 

  58. D.W. Johnson, E.M. Rabinovich, D.A. Fleming, and J.B. MacChesney, J. Mater. Sci. 24, 2214 (1989).

    Google Scholar 

  59. E.M. Rabinovich, J.B. MacChesney, D.W. Johnson, J.R. Simpson, B.W. Meagher, F.V. Dimarcello, D.L. Wood, and E.A. Sigety, J. Non-Crystalline Solids 63, 155 (1984).

    Google Scholar 

  60. E.A. Chandross, D.A. Fleming, D.W. Johnson, J.B. MacChesney, and F.W. Walz, U.S. Patent, 5, 240, 488 (1993).

    Google Scholar 

  61. M. Toki, S. Miyashita, T. Takeuchi, S. Kanbe, and A. Kochi, J. Non-cryst. Solids 100, 479 (1988).

    Google Scholar 

  62. M. Toki, T. Takeuchi, S. Miyasita, and S. Kanabe, J. Mater. Sci. 27, 2857 (1992).

    Google Scholar 

  63. T. Mori, M. Toki, M. Ikejiri, M. Takei, M. Aoki, S. Uchiyama, and S. Kanbe, J. Non-Cryst. Solids 100, 523 (1988).

    Google Scholar 

  64. H. Okazaki, T. Kitagawa, S. Shibata, and T. Kimura, J. Non-Crystalline Solids 116, 87 (1990).

    Google Scholar 

  65. T. Kawaguchi, J. Iura, N. Taneda, H. Hishikura, and Y. Kokubu, J. Non-Cryst. Solids 82, 50 (1986).

    Google Scholar 

  66. F. Kirkbir and S. Ray Chaudhuri, in Sol-Gel Optics II, edited by J.D. Mackenzie (SPIE—The International Society for Optical Engineering, Washington, 1992), vol. 1758, p. 160.

    Google Scholar 

  67. J. Phalippou, in Chemical Processing of Ceramics, edited by B.I. Lee and E.J.A. Pope (Marcel Dekker, New York, 1994), p. 265.

    Google Scholar 

  68. I. Matsuyama, K. Susa, S. Satoh, and T. Suganuma, J. Ceram. Soc. Bull. 63, 1409 (1984).

    Google Scholar 

  69. E.M. Rabinovich, D.L. Wood, D.W. Jhonson, D.A. Fleming, S.M. Vincent, and J.B. MacChesney, J. Non-Crystalline Solids 82, 42 (1986).

    Google Scholar 

  70. L.L. Hench and S.H. Wang, Phase Transitions 24, 785 (1990).

    Google Scholar 

  71. T.E. Elmer, J. Am. Ceramic Soc. 64, 150 (1981).

    Google Scholar 

  72. J.B. MacChesney, D.W. Johnson, D.A. Fleming, F.W. Walz, and T.Y. Kometani, Mat. Res. Bull. 22, 1209 (1987).

    Google Scholar 

  73. R.D. Shoup, in Ultrastructure Processing of Advanced Ceramics, edited by D.R. Uhlmann and D.R. Ulrich (Wiley, New York, 1992), p. 291.

    Google Scholar 

  74. G. De, D. Kundu, B. Karmakar, and D. Ganguli, J. Mater. Lett. 16, 231 (1993).

    Google Scholar 

  75. H. Murata, D.E. Meyers, F. Kirkbir, S. Ray Chaudhuri, and A. Sarkar, to be published, in J. Sol-Gel Sci. Tech. (1995).

  76. J. Zarzycki, J. Non-Crystalline Solids 48, 105 (1982).

    Google Scholar 

  77. J. Zarzycki, in Advances in Ceramics: Nucleation and Crystallization in Glasses, edited by J.H. Simmons, D.R. Uhlmann, and G.H. Beall (Am. Ceram. Soc., Columbus, Ohio, 1982), vol. 4, p. 204.

    Google Scholar 

  78. Dynasil (Berlin, New Jersey), sales brochure (1995).

  79. Corning Co. (Corning, New York), sales brochure (1995).

  80. Heraeus Co. (Duluth, Georgia), sales brochure (1995).

  81. Geltech Inc. (Alachua, Florida), sales brochure (1995).

  82. L.L. Hench, F.G. Araujo, J.K. West, and G.P.La Torre, J. Sol-Gel Sci. Techn. 2, 647 (1994).

    Google Scholar 

  83. L.L. Hench, in Chemical Processing of Advanced Materials, edited by L.L. Hench and J.K. West (John Wiley, New York, 1992), p. 875.

    Google Scholar 

  84. S. Sakka, H. Kozuka, and S.H. Kim, in Ultrastructure Processing of Advanced Ceramics, edited by J.D. Mackenzie and D.R. Ulrich (John Wiley, New York, 1988), p. 159.

    Google Scholar 

  85. R.D. Shoup, in Engineered Materials Handbook, Ceramics and Glasses (ASM International, Ohio, 1991), p. 445.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirkbir, F., Murata, H., Meyers, D. et al. Drying and sintering of sol-gel derived large SiO2 monoliths. J Sol-Gel Sci Technol 6, 203–217 (1996). https://doi.org/10.1007/BF00402691

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00402691

Keywords

Navigation