Skip to main content
Log in

Nonstandard signature of spacetime, superstrings, and the split composition algebras

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

It has been established that the covering group of the Lorentz group in the dimensions D=3, 4, 6 and 10, can be expressed in a unified way, based on the four composition-division algebras ℝ, ℂ, ℚ and \(\mathbb{O}\). If the division algebras in the construction of the covering groups of the Lorentz groups in D=3, 4, 6 and 10 are replaced by the split composition algebras, then the sequence of groups \(\widetilde{{\text{SO}}}{\text{(2,2)}}\), \(\widetilde{{\text{SO}}}{\text{(3,3)}}\) and \(\widetilde{{\text{SO}}}{\text{(5,5)}}\) results. Classical superstrings embedded in such spacetimes can be defined, and the split composition algebras provide a natural framework for their description.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Foot, R. and Joshi, G. C., University of Melbourne Preprint UM-P-88/37.

  2. Blencowe, M. P. and Duff, M. J., Imperial College Preprint /TP/87-88/20.

  3. KugoT. and TownsendP., Nucl. Phys. B221, 357 (1983).

    Article  Google Scholar 

  4. HasiewiczZ. and LukierskiJ., Phys. Lett. 145B, 65 (1984); Dündarer, R., Gürsey, F., and Tze, C. H., Nucl. Phys. B266, 440 (1986); Davies, A. J. and Joshi, G. C., J. Math. Phys. 27, 3036 (1986).

    Article  Google Scholar 

  5. SudberyA., J. Phys. A17, 939 (1984); Chung, K.-W. and Sudbery, A., Phys. Lett. 198B, 161 (1987).

    Google Scholar 

  6. GürseyF., Mod. Phys. Lett. A2, 967 (1987).

    Google Scholar 

  7. FootR. and JoshiG. C., Mod. Phys. Lett. A3, 47 (1988).

    Google Scholar 

  8. FootR. and JoshiG. C., Phys. Lett. 199B, 203 (1987).

    Google Scholar 

  9. Jordan, P., Nachr. Ges. Wis. Göttinger, 209, (1983); Jordan, P., Von Neuman, J., and Wigner, E. P., Ann. of Math. 35, 29 (1934).

  10. SorgseppL. and LohmusJ., Hadronic J. 2, 1390 (1979).

    Google Scholar 

  11. Ramond, R., Caltech preprint CALT-68-577 (1976).

  12. GünaydinM. and GürseyF., J. Math. Phys. 14, 1651 (1973).

    Article  Google Scholar 

  13. Wess, J. and Bagger, J., Supersymmetry and Supergravity, Princeton University Press, 1983.

  14. GliozziF., OliveD., and ScherkJ., Nucl. Phys. B122, 253 (1977); Green, M. B. and Schwarz, J. H., Phys. Lett. 136B, 367 (1984).

    Article  Google Scholar 

  15. BrinkL., SchwarzJ. H., and ScherkJ., Nucl. Phys. B121, 77 (1977).

    Article  Google Scholar 

  16. FairlieD. B. and ManogueC. A., Phys. Rev. D36, 475 (1987).

    Google Scholar 

  17. FootR. and JoshiG. C., Mod. Phys. Lett. D3, 999 (1988).

    Google Scholar 

  18. FootR. and JoshiG. C., Lett. Math. Phys. 15, 237 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foot, R., Joshi, G.C. Nonstandard signature of spacetime, superstrings, and the split composition algebras. Lett Math Phys 19, 65–71 (1990). https://doi.org/10.1007/BF00402262

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00402262

AMS subject classification (1980)

Navigation