Skip to main content
Log in

Calorimetric investigations of the different castes of honey bees, Apis mellifera carnica

  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Summary

Honey bees of different age and castes were investigated calorimetrically at 20, 25 and 30 °C. Experiments were completed by endoscopic observation of the insects in the visible and the near infrared range and by acoustical monitoring and subsequent frequency analysis of various locomotor activities. Direct calorimetric results of this paper are compared with data of indirect calorimetry from the literature using a respiratory quotient of 1.00 and 21.13 J consumed. Agreements between both methods are generally good. The results show that weight-specific heat production rates increase with age of worker bees by a factor of 5.6 at 30 °C, 3.7 at 25 °C and 40.0 at 20 °C. In groups of foragers the heat production decreases with growing group size to around 6% of the value for an isolated bee. The presence of a fertile queen or of brood reduces the heat output of a small worker group significantly. Adult drones exhibit a much higher metabolic rate (up to 19.7-fold at 20 °C) than juveniles with strong fluctuations in the power-time curves. Fertile queens show a less pronounced heat production rate than virgin queens (54% at 30 °C, 87% at 25 °C and 77% at 20 °C). Calorimetric unrest is much higher for young than for adult queens. Heat production is very low in both uncapped and capped brood and less than 30% of that of a newly emerged worker. In most cases temperature showed a significant influence on the metabolic level, although its sign was not homogeneous between the castes or even within them. Locomotor activities are easily recorded by the acoustic frequency spectrum (0–7.5 kHz) and in good agreement with endoscopic observations and calorimetric traces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

RQ:

respiratory quotient

ww:

wet weight

References

  • Allen MD (1959a) Respiration rates of worker honeybees of different ages and at different temperatures. J Exp Biol 36:92–101

    Google Scholar 

  • Allen MD (1959b) Respiration rates of larvae of drone and worker honey bees, Apis mellifera L. J Econ Entomol 52:399–402

    Google Scholar 

  • Armbruster L (1922) Über den Wärmehaushalt im Bienenvolk. Arch Bienenkd 4:268–270

    Google Scholar 

  • Bachem I, Lamprecht I (1983) The hill of the red wood ants Formica polyctena as a model of an ecological system. Zh Obshch Biol 44:114–123

    Google Scholar 

  • Bachem I, Lamprecht I, Schaarschmidt B (1980) Energetical investigations on the ecologic system: ant hill. In: Hemminger W, Wiedemann HG (eds) Thermal analysis. Birkhäuser, Basel, pp 571–575

    Google Scholar 

  • Blanke M, Lensing W (1989) Measurement of metabolic activity of the honeybee by assessing respiration. J Apic Res 28:131–135

    Google Scholar 

  • Cahill K, Lustick S (1976) Oxygen consumption and thermoregulation in Apis mellifera. Comp Biochem Physiol 55A:355–357

    Google Scholar 

  • Calvet E, Prat H (1956) Microcalorimetrie — applications physicochimiques et biologiques. Masson, Paris

    Google Scholar 

  • Chauvin R (1968) V. Energetique (calorimetrie) des abeilles, d'apres le travaux de M. Roth (1964–1965). In: Traite de biologie de l'abeille. vol 1: biologie et physiologie generales. Chauvin R (ed) Masson Paris, pp 245–261

    Google Scholar 

  • Coenen-Staß D, Schaarschmidt B, Lamprecht I (1980) Temperature distribution and calorimetric determination of heat production in the nest of the wood ant, Formica polyctena (Hymenoptera, Formicidiae). Ecology 61:238–244

    Google Scholar 

  • Esch H (1960) Über die Körpertemperaturen und den Wärmehaushalt von Apis mellifica. Z vgl Physiol 43:305–335

    Google Scholar 

  • Fahrenholz L, Lamprecht I, Schricker B (1989a) Thermal investigations of a honey bee colony: thermoregulation of the hive during summer and winter and heat production of members of different bee castes. J Comp Physiol B 159:551–560

    Google Scholar 

  • Fahrenholz L, Lamprecht I, Schricker B (1989b) Microcalorimetric investigations of the energy metabolism of honeybee workers, Apis mellifera carnica. Thermochim Acta 151:13–21

    Google Scholar 

  • Farrar MD (1931) Metabolism of the adult honey bee. J Econ Entomol 24:611–616

    Google Scholar 

  • Feller P, Nachtigall W (1989) Flight of the honey bee. II. Inner and surface thorax temperatures and energetic criteria, correlated to flight parameters. J Comp Physiol B 158:719–727

    Google Scholar 

  • Free JB (1977) The organization and structure of the honeybee colony. Studies in biology, vol 81. Arnold, London

    Google Scholar 

  • Free JB, Simpson J (1963) The respiratory metabolism of honey-bee colonies at low temperatures. Entomol Exp Appl 6:234–238

    Google Scholar 

  • Free JB, Spencer-Booth Y (1958) Observations on the temperature regulation and food consumption of honeybees (Apis mellifera). J Exp Biol 35:930–937

    Google Scholar 

  • Free JB, Spencer-Booth Y (1959) Temperature regulation by honeybees. Bee World 40:173–177

    Google Scholar 

  • Free JB, Spencer-Booth Y (1962) The upper lethal temperatures of honeybees. Entomol Exp Appl 5:249–254

    Google Scholar 

  • Goller F, Esch HE (1988) Thermoregulation and oxygen consumption in workers and drones of Apis mellifera (poster). 10th Conf Eur Soc Comp Physiol Biochem, Innsbruck, Austria

  • Harrison JM (1987) Roles of individual honeybee workers and drones in colonial thermogenesis. J Exp Biol 129:53–61

    Google Scholar 

  • Heinrich B (1980) Mechanism of body-temperature regulation in honeybees, Apis mellifera. II. Regulation of thoraric temperature at high air temperatures. J Exp Biol 85:73–87

    Google Scholar 

  • Heinrich B (1981a) Energetics of honeybee swarm thermoregulation. Science 212:565–566

    Google Scholar 

  • Heinrich B (1981b) The regulation of temperature in the honeybee swarm. Sci Am 244:147–160

    Google Scholar 

  • Helversen O von (1972) Zur spektralen Unterschiedsempfindlichkeit der Honigbiene. J Comp Physiol 80:439–474

    Google Scholar 

  • Hemminger W, Höhne G (1984) Calorimetry-fundamentals and practice. Verlag Chemie, Weinheim, FRG

    Google Scholar 

  • Heran H, Crailsheim K (1988) Energy requirements of bees (Apis mellifera carnica Pollm.) in free flight, with and without additional load. In: Energy transformations in cells and animals, 10th Conf Eur Soc Comp Physiol Biochem, Innsbruck, Austria: 77

  • Herman D, Lemasson M, Semaille R, Van Impe G (1982) Mesure de la consommation d'oxygene de l'abeille mellifere (Apis mellifica L.) par polarographie. Z Angew Entomol 93:284–291

    Google Scholar 

  • Heusner A, Roth M (1963) Consommation d'oxygene de l'Abeille a differentes temperatures. C R Acad Sci 256:284–285

    Google Scholar 

  • Heusner A, Stussi T (1964) Metabolism energetique de l'abeille isolee: son role dans la thermoregulation de la ruche. Insectes Soc 11:239–266

    Google Scholar 

  • Himmer A (1926) Der soziale Wärmehaushalt der Honigbiene. I. Die Wärme im nicht brütenden Wintervolk. Erlanger Jahrb Bienenkd 4:1–51

    Google Scholar 

  • Himmer A (1927) Der soziale Wärmehaushalt der Honigbiene. II. Die Wärme der Bienenbrut. Erlanger Jahrb Bienenkd 5:1–32

    Google Scholar 

  • Himmer A (1932) Die Temperaturverhältnisse bei den sozialen Hymenopteren. Biol Rev 7:224–253

    Google Scholar 

  • Hocking B (1953) The intrinsic range and speed of flight of insects. Trans R Entomol Soc Lond 104:218–234

    Google Scholar 

  • Jay SC (1963) The development of honeybees in their cells. J Apic Res 2:117–134

    Google Scholar 

  • Jongbloed J, Wiersma CAG (1935) Der Stoffwechsel der Honigbiene während des Fliegens. Z Vgl Physiol 21:519–533

    Google Scholar 

  • Jungmann R, Rothe U, Nachtigall W (1989) Flight of the honey bee. I. Thorax surface temperature and thermoregulation during tethered flight. J Comp Physiol B 158:711–718

    Google Scholar 

  • Kosmin NP, Alpatov WW, Resnitschenko MS (1932) Zur Kenntnis des Gaswechsels und des Energieverbrauchs der Biene in Beziehung zu deren Aktivität. Z Vgl Physiol 17:408–422

    Google Scholar 

  • Kronenberg F (1979) Colonial thermoregulation in honey bees. Doctoral thesis, Stanford University, Stanford, CA, USA

  • Kronenberg F, Heller HC (1982) Colonial thermoregulation in honey bees (Apis mellifera). J Comp Physiol 148:65–76

    Google Scholar 

  • Kühn A (1927) Über den Farbensinn der Bienen. Z Vgl Physiol 5:762–800

    Google Scholar 

  • Lamprecht I (1983) Application of calorimetry to different biological fields and comparison with other methods. Boll Soc Nat Napoli 92:515–542

    Google Scholar 

  • Lamprecht I, Becker W (1988) Combination of calorimetry and endoscopy for monitoring locomotor activities of small animals. Thermochim Acta 130:87–93

    Google Scholar 

  • Lemke M, Lamprecht I (1989) A model for heat production and thermoregulation in winter clusters of honey bees using differential heat conduction equations. J Theor Biol 142:261–273

    Google Scholar 

  • Lindauer M (1952) Ein Beitrag zur Frage der Arbeitsteilung im Bienenstaat. Z Vgl Physiol 34:299–345

    Google Scholar 

  • Lindauer M (1954) Temperaturregulierung und Wasserhaushalt im Bienenstaat. Z Vgl Physiol 36:391–432

    Google Scholar 

  • Lorenz RJ (1984) Grundbegriffe der Biometrie. Fischer, Stuttgart

    Google Scholar 

  • May ML (1976) Warming rates as a function of body size in periodic endotherms. J Comp Physiol B 111:55–70

    Google Scholar 

  • McNeil DR (1977) Interactive data analysis. A practical primer. Wiley, New York

    Google Scholar 

  • Melampy RM, Willis ER (1939) Respiratory metabolism during larval and pupal development of the female honeybee (Apis mellifica L.). Physiol Zool 12:302–311

    Google Scholar 

  • Moffett JO, Lawson FA (1975) Effect of Nosema infection on O2 consumption by honey bees. J Econ Entomol 68:627–629

    Google Scholar 

  • Nachtigall W, Rothe U, Feller P, Jungmann R (1989) Flight of the honey bee. III. Flight metabolic power calculated from gas analysis, thermoregulation and fuel consumption. J Comp Physiol B 158:729–737

    Google Scholar 

  • Nagy KA, Stallone JN (1976) Temperature maintenance and CO2 concentration in a swarm cluster of honey bees, Apis mellifera. Comp Biochem Physiol 55A:169–171

    Google Scholar 

  • Omholt SW (1987a) Thermoregulation in the winter cluster of the honeybee, Apis mellifera. J Theor Biol 128:219–231

    Google Scholar 

  • Omholt SW (1987b) Why honeybees rear brood in winter. A theoretical study of the water conditions in the winter cluster of the honeybee, Apis mellifera. J Theor Biol 128:329–337

    Google Scholar 

  • Ritter W (1982) Experimenteller Beitrag zur Thermoregulation des Bienenvolkes (Apis mellifera L.) Apidologie 13:169–195

    Google Scholar 

  • Roth M (1964) Adaptation de la thermogenese a la temperature ambiante et effet d'economie thermique du groupe chez l'Abeille (Apis mellifica L.) C R Acad Sci Paris 258:5534–5537

    Google Scholar 

  • Roth M (1965) La production de chaleur chez Apis mellifera L. Ann Abeille 8:5–77

    Google Scholar 

  • Rothe U, Nachtigall W (1989) Flight of the honey bee. IV. Respiratory quotients and metabolic rates during sitting, walking and flying. J Comp Physiol B 158:739–749

    Google Scholar 

  • Schmaranzer S, Stabentheiner A (1988) Variability of the thermal behavior of honeybees on a feeding place. J Comp Physiol B 158:135–141

    Google Scholar 

  • Seeley TD (1982) Adaptive significance of the age polyethism schedule in honeybee colonies. Behav Ecol Sociobiol 11:287–293

    Google Scholar 

  • Shuel RW, Dixon SE (1959) Studies in the mode of action of royal jelly in honeybee development. II. Respiration of newly emerged larvae on various substrates. Can J Zool 37:803–813

    Google Scholar 

  • Simpson J (1961) Nest climate regulation in honey bee colonies. Science 133:1327–1333

    Google Scholar 

  • Southwick EE (1982) Metabolic energy of intact honey bee colonies. Comp Biochem Physiol 71A:277–281

    Google Scholar 

  • Southwick EE (1985) Allometric relations, metabolism and heat conductance in clusters of honey bees at cool temperatures. J Comp Physiol B 156:143–149

    Google Scholar 

  • Southwick EE, Mugaas J (1971) A hypothetical homeotherm: the honeybee hive. Comp Biochem Physiol 40 A:935–944

    Google Scholar 

  • Stussi TH (1972) L'heterothermie de l'abeille. Arch Sci Physiol 26:131–159

    Google Scholar 

  • Tauchert F (1929) Untersuchungen über Atmung und Wasserdampfabgabe bei Insekten. Z Biol (München) 88:377–381

    Google Scholar 

  • Tauchert F (1930) Weitere Stoffwechseluntersuchungen an Insekten. Z Biol (München) 89:541–546

    Google Scholar 

  • Withers PC (1981) The effects of ambient air pressure on oxygen consumption of resting and hovering honeybees. J Comp Physiol B 141:433–437

    Google Scholar 

  • Woodworth CE (1932) Some effects of reduced atmospheric pressure upon honeybee respiration. J Econ Entomol 25:1036–1042

    Google Scholar 

  • Worswick PVW (1987) Comparative study of colony thermoregulation in the African honeybee, Apis mellifera adansonii Latreille and the Cape honeybee, Apis mellifera capensis Escholtz. Comp Biochem Physiol 86A:95–102

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is part of the PhD thesis of L.F.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fahrenholz, L., Lamprecht, I. & Schricker, B. Calorimetric investigations of the different castes of honey bees, Apis mellifera carnica . J Comp Physiol B 162, 119–130 (1992). https://doi.org/10.1007/BF00398337

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00398337

Key words

Navigation