Skip to main content
Log in

Haüy and A.-P. Candolle: Crystallography, botanical systematics, and comparative morphology, 1780–1840

  • Published:
Journal of the History of Biology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Arthur J.Cain, “Deductive and Inductive Methods in Post-Linnaean Taxonomy,” Proc. Linn. Soc. London, 170, (1959), 185–217; “The Post-Linnaean Development of Taxonomy,” ibid., 234–244.

    Google Scholar 

  2. HenriDaudin, Les méthodes de la classification et l'idée de série en botanique et en zoologique de Linné à Lamarck (1740–1790) (Paris: Félix Alcan, 1926); published also with the title De Linné a Jussieu: méthodes de la classification et l'idée de série en botanique et en zoolgie (1740–1790); Cuvier et Lamarck: les classes zoologiques et l'idée de série animale (1790–1830) (Paris: Félix Alcan, [1926]), 2 vols.

    Google Scholar 

  3. Arthur O.Lovejoy, The Great Chain of Being (Cambridge, Mass.: Harvard University Press, 1936), is a classic treatment of the subject.

    Google Scholar 

  4. Mary P.Winson, Starfish, Jellyfish and the Order of Life: Issues in Nineteenth Century Science (New Haven: Yale University Press, 1976), esp. pp. 1–6, 178.

    Google Scholar 

  5. AgnesArber, The Natural Philosophy of Plant Form (Cambridge: Cambridge University Press, 1950; facsimile reprint, Darien, Conn.: Hafner, 1970).

    Google Scholar 

  6. See also MichaelGuédès, “La théorie de la métamorphose en morphologie végètale: Des origines à Goethe et Batsch,” Rev. Hist. Sci., 22 (1969), 323–363; “La théorie de la métamorphose en morphologie végètale: A.-P. de Candolle et P. J. F. Turpin,” ibid., 25 (1972), 253–270. Enrique A. López, in “La doctrina de la simetría en A. P. de Candolle y los problemas fundamentales de la classificatión,” Anales Jard. Bot. Madrid, 9 (1950), 5–94, evaluated de Candolle's work; his study is confusing and incomplete, although not without insight. Julius von Sachs, Geschichte der Botanik vom 16. Jahrhundert bis 1860 (Munich: Oldenbourg, 1875), trans. H. E. F. Garnsey, History of Botany (1530–1860), (Oxford: Clarendon Press, 1890), esp. pp. 128–135, gives a useful account of de Candolle's ideas. In none of these works is de Candolleś nontheoretical work discussed. The best description of zoological developments in this field in the nineteenth century is still E. S. Russell, Form and Function (London: Murray, 1913).

    Google Scholar 

  7. The de Candolle family is a bibliographer's nightmare. A.-P. de Candolle (Augustin-Pyramus), in this paper simply called de Candolle, was the father of A. L. P. P. de Candolle (Alphonse) and the grandfather of A. C. P. de Candolle (Casimir); all three were botanists.

  8. This relationship has passed practically unnoticed, although the article by FrancoisDagognet, “Valentin (sic) Haüy, Etiennne Geoffroy Saint-Hilaire, Augustin P. de Candolle: un conception d'ensemble mais aussi un ensemble des conception,” Rev. Hist. Sci., 25 (1972), 327–336, is a notable exception; see also Pietro Corsi, “Models and Analogies for the Reform of Natural History: Features of the French Debate, 1790–1800,” in Lazzaro Spallanzani e la Biologia del Settecento, ed. W. Bernard: and A. La Vergata, (Florence: Olschki, 1982), p. 388. López, “La doctrina de la simetría,” briefly notes the influence of Haüy on de Candolle and gives references to crystallography in the latter's work, but he does not fully develop the connection.

    Google Scholar 

  9. Dagognet, “Valentin Haüy,” and Corsi, “Models and Analogies,” passim. As these authors suggest, the influence of crystallography seems to have been quite pervasive.

  10. HermannWeyl, Symmetry, (Princeton: Princeton University Press, 1952), esp. pp. 3–20.

    Google Scholar 

  11. Francis M.Jaeger, Lectures on the Principle of Symmetry and its Application in All Natural Sciences (Amsterdam: Elsevier, 1920), 2nd. ed.

    Google Scholar 

  12. HermannWeyl, Symmetry, (Princeton: Princeton University Press, 1952), esp. pp. 13–16, 63–65.

    Google Scholar 

  13. Mary P.Winsor, Starfish, Jellyfish and the Order of Life: Issues in Nineteenth Century Science (New Haven: Yale University Press, 1976), esp. pp. 14–24.

    Google Scholar 

  14. GeorgesCuvier, “Sur un nouveau rapprochement à établir entre les classes qui composent le Règne animal,” Ann. Mus. Natl. Hist. Nat., 19 (1812), 75.

    Google Scholar 

  15. Lorenz Oken, “Cuviers und Okens Zoologien neben einander gestellt,” Isis (Oken), (1817), 1145, 1152.

  16. HélèneMetzger, Le genèse de la science des cristaux (Paris: Félix Alcan, 1918), gives an excellent treatment.

    Google Scholar 

  17. WilliamColeman, Georges Cuvier, Zoologist (Cambridge, Mass.: Harvard University Press, 1964).

    Google Scholar 

  18. Russell, Form and Function, passim; Michael T. Ghiselin, “The Failure of Morphology to Assimilate Darwinism,” in Ernst Mayr and William B. Provine, The Evolutionary Synthesis (Cambridge, Mass.: Harvard University Press, 1980), pp. 180–193; R. C. Maulitz, “Schwann's Way: Cells and Crystals,” J. Hist. Med. Allied Sci., 26 (1971), 422–437.

  19. Jean-Baptiste L.Romé de l'Isle, Essai de cristallographie (Paris: Didot and Knapin & Delaguette, 1772), and other works.

    Google Scholar 

  20. HélèneMetzger, Le genèse de la science des cristaux (Paris: Félix Alcan, 1918), pp. 69, 70.

    Google Scholar 

  21. Details of Haüy's life are taken from GeorgesCuvier, “Eloge historique de M. Haüy,” Mém. Acad. Roy. Sci., 8 (1829), 145–178 (trans. C. A. Alexander, Ann. Rep. Bd. Regents Smithsonian Inst., 1860, [1861], 376–392); Metzger, Le genèse; Alfred Lacroix, “La vie et l'oeuvre de l'abbé René-Just Haüy,” Bull. Soc. Franç. Minér., 67 (1944), 15–226.

    Google Scholar 

  22. Lacroix, “La vie et l'oeuvre,” p. 22.

  23. Jean-Baptiste L.Romé de l'Isle, Essai de cristallographie (Paris: Didot and Knapin & Delaguette, 1772), p. 16.

    Google Scholar 

  24. Jean-Baptiste L.Romé de l'Isle, Essai de cristallographie (Paris: Didot and Knapin & Delaguette, 1772), p. 17.

    Google Scholar 

  25. René-JustHaüy, Essai d'une théorie sur la structure des crystaux (Paris: Gogué & Née de la Rochelle, 1784), p. 42nl. The word was used in the same senses in botany. “Some [characters] are primitive; essential by themselves and invariable, like the number of the lobes of the embryo ... they are used for the main divisions. The others are secondary, they vary sometimes, and do not become essential until their existence is joined to that of one of the preceeding; it is their assemblage that distinguishes families” (Antoine L. de Jussieu, “Examen de la famille des Rénoncules,” Mém. Acad. Roy. Sci. 1773, [1773], p. 443). “There are in plants, as in animals, primitive classes which include other secondary classes; both are founded on general and invariable characters which should only be taken from organs that are most essential for life, for the reproduction of species.” (Antoine L. de Jussieu, “Exposition d'un nouvel ordre de plantes adopté dans les démonstrations du Jardin Royal,” ibid. 1774, [1774], p. 282).

    Google Scholar 

  26. Haüy and Romé de l'Isle both had a high regard for Linnaeus as a crystallographer as well, calling him the founder of crystallography/ R.-J.Haüy, Traité de la mineralogie (Paris: Delance, 1801), I, 17. Linnaeus gave Romé de l'Isle high praise for his Essai de cristallographie. Linnaeus' own work on crystals appeared in the Systema naturae, 6th ed. (Lipsia: Kiesewetter, 1748) and De crystallorum generatione (Uppsala: Martin Kohler, 1747).

    Google Scholar 

  27. René-JustHaüy, Traité de la mineralogie (Bachelier: Paris, 1820), 2nd ed., I, 6–20, 85.

    Google Scholar 

  28. René-JustHaüy, Tableau comparatif des résultats de la cristallographie et de l'analyse chimique relativement à la classification des minéraux (Paris: Courcier, 1809; reprint ed., Brussels: Culture & Civilizations, 1968), p. xix.

    Google Scholar 

  29. René-JustHaüy, Essai d'une théorie sur la structure des crystaux (Paris: Gogué & Née de la Rochelle, 1784), pp. 2, 3; Traité de mineralogie, 1 st ed., I, 13, comparison with plants only.

    Google Scholar 

  30. René-JustHaüy, Essai d'une théorie sur la structure des crystaux, (Paris: Gogué & Née de la Rochelle, 1784), p. 5.

    Google Scholar 

  31. René-JustHaüy, Essai d'une théorie sur la structure des crystaux (Paris: Gogué & Née de la Rochelle, 1784), p. 25.

    Google Scholar 

  32. René-JustHaüy, Traité de la mineralogie (Bachelier: Paris, 1820), 1 st ed., III, 68.

    Google Scholar 

  33. René-JustHaüy, Traité de la mineralogie (Bachelier: Paris, 1820), p. 67.

    Google Scholar 

  34. René-JustHaüy, Traité de la mineralogie (Bachelier: Paris, 1820), pp. 155–160.

    Google Scholar 

  35. René-JustHaüy, Traité de la mineralogie (Bachelier: Paris, 1820), I, 172–181.

    Google Scholar 

  36. FrançoisJacob, The Logic of Life, a History of Heredity (New York: Pantheon, 1974), p. 41. Trans. B. E. Spillman from La logique du vivant, un histoire d'hérédité (Paris: Gallimard, 1970). See also Corsi, “Models and analogies.”

    Google Scholar 

  37. MichelAdanson, Familles des plantes (Paris: Vincent, 1764), I, cli, clii; Antoine L. de Jussieu, Genera plantarum (Paris: Herissant and Barrois, 1789), p. xx; Jean-Baptiste A. P. M. de Lamarck, Flore françoise (Paris: Imprimerie Royale, 1778 [1779]), I, xiii, xiv, 136, 137; José F. Correia da Serra, “On Two Genera of Plants Belonging to the Natural Family of the Aurantia,” Trans. Linn. Soc. London, 5 (1800), 220. Jacob Lorch, “The Discovery of Nectar and Nectaries and its Relation to Views on Flowers and Insects,” Isis (Sarton), 69 (1978), 518–521, gives some additional details but is less concerned with the systematic aspect of the controversy.

    Google Scholar 

  38. Augustin-PyramusdeCandolle, Mémoires et souvenirs de Augustin Pyramus de Candolle (Geneva: Cherbuliez, 1862), p. 214; this is a useful autobiography. Many of de Candolle's ideas on comparative morphology are already developed, albeit en petit, in the introductory “Principes élémentaires de botanique” in Jean Baptiste A. P. M. de Lamarck and Augustin-Pyramus de Candolle, Flore française (Paris: Imprimerie Royale, 1805), 3rd ed., vol. 1. De Candolle was responsible for this third edition (which he wrote before he was thirty, and it earned him both a reputation and a considerable income).

    Google Scholar 

  39. Augustin-PyramusdeCandolle, Mémoires et souvenirs de Augustin Pyramus de Candolle (Geneva: Cherbuliez, 1862). introduction by Alphonse de Candolle, p. xiii.

    Google Scholar 

  40. Augustin-PyramusdeCandolle, Mémoires et souvenirs de Augustin Pyramus de Candolle (Geneva: Cherbuliez, 1862), p. 40.

    Google Scholar 

  41. See also MauriceCrosland, The Society of Arcueil: A View of French Science at the Time of Napoleon I (Cambridge, Mass: Harvard University Press, 1967). It is interesting that de Candolle was the only young member of the society whose interests were mainly biological.

    Google Scholar 

  42. Augustin-PyramusdeCandolle, Théorie élémentaire de la botanique (Paris: Déterville, 1813); 2nd ed. Paris: Déterville, 1819); Organographie végètale (Paris: Déterville, 1827), 2 vols. The reception of the first edition of the Théorie élémentaire must have been adversely affected by the European conflicts raging at the time. Both books were translated, although some translations of the former were not very satisfactory.

    Google Scholar 

  43. Augustin-PyramusdeCandolle, Mémoires et souvenirs de Augustin Pyramus de Candolle (Geneva: Cherbuliez, 1862), p. 503.

    Google Scholar 

  44. Augustin-PyramusdeCandolle, Théorie élémentaire de la botanique (Paris: Déterville, 1813); 1 st ed, p. 77.

    Google Scholar 

  45. For details of Correia da Serra's life see AugustodaSilva Carvalho “O abade Correia da Serra,” Mem. Acad. Ci. Lisboa, Cl. Ci., 6 (1948), 7–223; R. B. Davis, “The Abbé Correa in America: 1812–1820,” Trans. Am. Phil. Soc., 45 (1955), 87–197. As Arber, The Natural Philosophy of Plant Form, p. 59, rightly remarked, Correia da Serra's scientific work has been undeservedly ignored and a study of his position in scientific circles in early nineteenth-century France would be of great interest; Davis emphasizes his role, while he was in America, as an intermediary in the transmission of ideas. De Candolle had a high regard for Correia da Serra's opinions and gave him the manuscript of the first edition of the Théorie élémentaire for criticism. The response was favorable, if brief: “Imprimez, imprimez” (de Candolle, Mémoires et souvenirs., p. 216). De Candolle, writing from Paris to his wife in Geneva on October 8, 1811, said Correia da Serra had told him that he had accomplished a geometry of botany and would revolutionize the science (Roger de Candolle, pers. comm.).

    Google Scholar 

  46. José F.Correia da Serra, “Observations sur la famille des orangers et sur les limites qui la circonscrivent” Ann. Mus. Natl. Hist. Nat., 6 (1805), 376–387. Where Correia da Serra obtained this idea of symmetry is unclear. Both Linnaeus and Haüy are possible sources. As Ernst Mayr notes in The Growth of Biological Thought (Cambridge, Mass.: Belknap Press of Harvard University Press, 1982, p. 192), the idea of classifying upward that was being developed at this time was a major methodological revolution.

    Google Scholar 

  47. Although Correia da Serra did not mention symmetry in his other papers, he expressed similar notions of looking for the basic plan of a group, organ system, or organ, and of working out variations and the significance of these variations. “Observations carpologiques,” Ann. Mus. Natl. Hist. Nat., 8 (1806), 59–76; “Note sur la valeur du perisperme, considéré comme charactère d'affinité des plantes,” ibid., 18 (1811), 205–211.

  48. José F.Correia da Serra, “Vues carpologiques,” Ann. Mus. Natl. Hist. Nat., 10 (1807), 151–156.

    Google Scholar 

  49. Augustin-PyramusdeCandolle, Théorie élémentaire de la botanique (Paris: Déterville, 1813); 1 st ed., p. 92. He must have meant to refer to the paper by Correia da Serra, “Observations sur la famille des orangers,” which was the only early paper to use symmetry in this sense. A paper on the Rutaceae that was published in the Transactions of the Linnean Society (Correia da Serra, “On two genera of plants”) made no mention of symmetry. As de Candolle also noted, Linnaeus referred briefly to the symmetry of natural groups: “Nothing prevails by an a priori rule, neither one nor another part of the fructification, but only the simple symmetry of all parts, which special characters often indicate.” Classes plantarum seu systemata plantarum (Lugd. Batavorum: Conrad Wishoff, 1738), p. 487; see López, “La doctrina de la simetría,” p. 18. Linnaeus did not develop the idea further.

    Google Scholar 

  50. For instance, see Augustin-PyramusdeCandolle, Théorie élémentaire de la botanique (Paris: Déterville, 1813); 1 st ed., pp. 69, 92–94, 97, 98, 106. Arber, The Natural Philosophy of Plant Form, pp. 174–177, and Guédès, “La théorie de la métamorphose ... de Candolle et Turpin,” passim, discuss de Candolle's ideas of symmetry in the context of serial homology. Mayr, The Growth of Biological Thought, p. 189 is mistaken on de Candolle's approach.

    Google Scholar 

  51. Augustin-PyramusdeCandolle, Théorie élémentaire de la botanique (Paris: Déterville, 1813); 1st ed., p. 92.

    Google Scholar 

  52. Augustin-PyramusdeCandolle, Théorie élémentaire de la botanique (Paris: Déterville, 1813); pp. 92–94.

    Google Scholar 

  53. Augustin-PyramusdeCandolle, Théorie élémentaire de la botanique (Paris: Déterville, 1813); pp. 117, 118.

    Google Scholar 

  54. Augustin-PyramusdeCandolle, Théorie élémentaire de la botanique (Paris: Déterville, 1813); p. 135; the sentence with emphasis in original.

    Google Scholar 

  55. Augustin-PyramusdeCandolle, Théorie élémentaire de la botanique Paris: Déterville, 1813, pp. 124, 125. These elements are not very different from those suggested earlier for use in the comparison of organisms: number, shape, proportion, and position (Carolus Linnaeus, Philosophia botanica [Stockholm: Kiesewetter, 1751], p. 116); and size, shape, and appearance of different parts, their number, position, and substance (Georges L. C. de Buffon, Histoire naturelle, générale et particulière, avec la description du cabinet du Roi [Paris: Imprimerie Royal, 1749], I, 21, 22). It is in the way these elements are used that we see the principal change.

    Google Scholar 

  56. Augustin-PyramusdeCandolle, Théorie élémentaire de la botanique Paris: Déterville, 1813, 1st ed., p. 206.

    Google Scholar 

  57. Augustin-PyramusdeCandolle, Théorie élémentaire de la botanique Paris: Déterville, 1813, 2nd ed., pp. 105–113.

    Google Scholar 

  58. Augustin-PyramusdeCandolle, Théorie élémentaire de la botanique Paris: Déterville, 1813, pp. 114–137.

    Google Scholar 

  59. Augustin-PyramusdeCandolle, Théorie élémentaire de la botanique Paris: Déterville, 1813, pp. 175–190.

    Google Scholar 

  60. Augustin-PyramusdeCandolle, Théorie élémentaire de la botanique Paris: Déterville, 1813, p. 73.

    Google Scholar 

  61. De Candolle had earlier based a classification of doubled flowers on Haüy's classification of crystals: Alphonse-PyramusdeCandolle, “Considérations générales sur les fleurs doubles, et en particulier sur celles de la famille des Renonculacées”, Mém. Phys. Chim. Soc. Arcueil, 3 (1817), 385–404.

    Google Scholar 

  62. Augustin-PyramusdeCandolle, Théorie élémentaire de la botanique Paris: Déterville, 1813, 2nd ed., pp. 116, 117. See also the preface, another addition. Definitions of analysis and synthesis have changed much over the years. At about this time the term “analysis” was used in the context of artificial classifications, “synthesis” in the context of natural classifications. See, for example, J. E. Bicheno, “On Systems and Methods in Natural History”, Trans. Linn. Soc. London, 15 (1827), 489, 490; see also below. De Candolle's synthetic approach was necessarily preceded by accurate analysis (in a sense, identification) — but of characters, not taxa.

    Google Scholar 

  63. Augustin-PyramusdeCandolle, Théorie élémentaire de la botanique Paris: Déterville, 1813, 2nd ed., p. 115.

    Google Scholar 

  64. Augustin-PyramusdeCandolle, Théorie élémentaire de la botanique Paris: Déterville, 1813, pp. 187, 188.

    Google Scholar 

  65. Augustin-PyramusdeCandolle, Théorie élémentaire de la botanique Paris: Déterville, 1813, pp. 99, 100, 186, 187.

    Google Scholar 

  66. Augustin-PyramusdeCandolle, Théorie élémentaire de la botanique Paris: Déterville, 1813, pp. 184, 185.

    Google Scholar 

  67. De Candolle, Organographie végétale, II, esp. 236–244.

  68. Ibid., pp. 240–241.

  69. Ibid., p. 243, also I, vi–ix; Cain “Deductive and Inductive Methods”, pp. 189, 202, 203, discusses the ambiguity in de Candolle's approach, although this later work is somewhat clearer than the earlier one; see Sachs, History of Botany, pp. 128, 134. López, “La doctrina da la simetría”, pp. 57, 58, also emphasizes this ambiguity.

  70. Augustin-PyramusdeCandolle, Théorie élémentaire de la botanique Paris: Déterville, 1813, 2nd ed., p. 189.

    Google Scholar 

  71. Marie J. P. Flourens, “Eloge historique de Pyramus de Candolle”, Mém. Acad. Roy. Sci. 19 (1842), p. xvi (trans. C. A. Alexander, Ann. Rep. Bd. Regents Smithsonian Inst., 1846 [1847], 271–283). Goethe's views of de Candolle were rather similar, see Guédès, “La théorie de la métamorphose ... de Candolle et Turpin”, pp. 259, 260. Cuvier was also somewhat disturbed by this aspect of de Candolle's work: Georges Cuvier, Histoire des progès des sciences naturelles depuis 1789 jusqu'à ce jour (Brussels: Société Belge de Libraire, 1838), I, 383, 384.

  72. AugustedeLaRive, “Notice sur la vie et les ouvrages de A. P. de Candolle”, Biblioth. Universelle Genève, 54 (1844), 69 (reprinted as A. P. de Candolle, sa vie et ses travaux, [Paris and Genèva: Cherbuliez, 1851]). De Cassini, a botanist following a long and eminent line of astronomers, also felt comfortable with de Candolle's ideas; see, for instance, his “De l'influence que l'avortement des étamines paroit avoir sur les périanthes”, J. Phys. Chim. Hist. Nat. Arts, 82 (1816), 342.

    Google Scholar 

  73. Augustin-PyramusdeCandolle, “Mémoire sur la famille des Crucifères”, Mém. Mus. Natl. Hist. Nat., 7 (1821), 169–252.

    Google Scholar 

  74. Correia da Serra, “Vues carpologiques”, passim.

  75. De Candolle, “Mémoire Crucifères”, p. 217.

  76. Ibid., p. 226. See also Correia da Serra, “Observations sur la famille des orangers”, p. 378, although Correia da Serra's notion of symmetry seems to have been less flexible.

  77. Augustin-PyramusdeCandolle, Collection des mémoires pour servir à l'histoire du regne végétale. Seconde mémoire. Sur la famille des Crassulacées (Paris and Strasbourg: Treuttel & Wurz, 1828), p. 10.

    Google Scholar 

  78. Augustin-PyramusdeCandolle, Collection des mémoires pour servir à l'histoire du regne végétale. Cinquième mémoire. Sur la famille des Ombellifères. (Paris and Strasbourg: Treuttel & Wurz, 1829), p. 7.

    Google Scholar 

  79. The term “analogy” was used in the beginning of the nineteenth century to describe similarities that would now be called either homological or analogical (Jacob, The Logic of Life, p. 101). The early de Candolle sometimes used “analogy” in the sense of similarities indicative of affinity in the natural system; but the definition of analogy at that time was basically similarity from whatever point of view was being considered (Essai sur les propriétés médicales des plantes, comparées avec leurs formes éxterieures et leur classification naturelle [Paris: Didot Jeune, 1804], p. 428); see also de Jussieu, “Exposition d'un nouvel ordre”, p. 280.

  80. Augustin-PyramusdeCandolle, Mémoires sur la famille des Légumineuses (Paris: Abelin, 1825–1827); see Mémoire IV. Division de la famille en sous-ordres et en tribus, 1826, p. 158, where de Candolle mentions both authors.

    Google Scholar 

  81. Augustin-PyramusdeCandolle, Mémoire sur la famille des Combretacées (Geneva: Barbezat & Delarue, 1828), p. 17; Collection ... Sixième mémoire. Sur la familles des Loranthacées (Paris and Strasbourg: Treuttel & Wurz, 1826), p. 160.

    Google Scholar 

  82. Augustin-PyramusdeCandolle, Mémoire sur la famille des Combretacées (Geneva: Barbezat & Delarue, 1828), p. 160.

    Google Scholar 

  83. Augustin-PyramusdeCandolle, “Mémoire sur le Cuviera, genre nouveau de la famille des Rubiacées”, Ann. Mus. Natl. Hist. Nat., 9 (1807), 220.

    Google Scholar 

  84. Augustin-PyramusdeCandolle, “Note sur la division du règne végétal en quatre embranchements”, Bibl. Univ. Sci. Belle-Lettres Arts Genève Sci. Arts, 18 (1833), 259–268; this paper he thought had been overlooked (de Candolle, Mémoires et souvenirs, p. 394).

    Google Scholar 

  85. For instance, see Augustin-PyramusdeCandolle, “Mémoire Crucifères”; Collection des mémoires pour servir à l'histoire du regne végétale. Premier mémoire. Sur la famille des Melastomatacées (Paris and Strasbourg: Treuttel & Wurz, 1828); Collection des Mémoires ... Neuvième mémoire. Observations sur la structure et la classification de la famille des Composées (Paris and Strasbourg: Treuttel & Wurz, 1838).

    Google Scholar 

  86. WilliamSwainson, The Study of Natural History (London: Longman, 1834), p. 91, 92.

    Google Scholar 

  87. Brown saw some of his ideas in those of de Candolle: RobertBrown, “An Account of a New Genus of Plants, Named Rafflesia”, Trans. Linn. Soc. London, 13 (1822), 211, 213. See also Charles Daubney, “Sketch of the Writings and Philosophical Character of Augustin Pyramus de Candolle”, Edinburgh New Phil. J., 34 (1843), 211, 212.

    Google Scholar 

  88. Martins, Oeuvres d'histoire naturelle, p. 307; Sachs, History of Botany, p. 140. However, in his paper “Some Observations on the Natural Family of Plants Called Compositae”, Trans. Linn. Soc. London, 12 (1818), 89, 90, Brown commented that a number of follicles disposed around an imaginary axis and equal in number to the parts of calyx and corolla “enters into my notion of a flower complete in all its parts”. See also Robert Brown, “Observations on the Structure and Aftinities of the More Remarkable Plants Collected by the Late Walter Oudney, M.D....”, in D. Denham and H. Clapperton, Narrative of Travels and Discoveries in Northern and Central Africa (London: John Murray, 1826), pp. 217, 218.

  89. Brown, “Observations on the structure and affinities”, p. 211.

  90. RobertBrown, “General remarks, geographic and systematical, on the botany of Terra Australis”, in Matthew Flinders, The Voyage to Terra Australis (London: G. & W. Nichol, 1814), II, 537.

    Google Scholar 

  91. Alexandre-Henri G.deCassini, “Observations sur le style et le stigmate des Synanthérées”, J. Phys. Chim. Hist. Nat. Arts, 56 (1813), 96–128, 249–275; see also Opuscules phytologiques (Paris: Levrault, 1826), I, 138.

    Google Scholar 

  92. De Cassini, “De l'influence que l'avortement des étamines”, pp. 337, 338; emphasis in original.

  93. DeCassini, “Troisième mémoire sur l'ordre des Synanthérées, contenant l'analyse de le corolle”, J. Phys. Chim. Hist. Nat. Arts, 82 (1816), 137, 138.

    Google Scholar 

  94. DeCassini, “Quatrième mémoire sur l'ordre des Synanthérées, contenant l'analyse de l'ovaire et ses accessoires”. J. Phys. Chim. Hist. Nat. Arts, 85 (1817), 20, 21.

    Google Scholar 

  95. WilliamWhewell, History of the Inductive Sciences from the Earliest to the Present Times (London: John Parker, 1837), 3 vols; unchanged in 3rd ed. (New York: D. Appleton, 1866), II, 468–475.

    Google Scholar 

  96. WilliamWhewell, The Philosophy of the Inductive Sciences (Founded on their History) (London: John Parker, 1840), I, 423, 424.

    Google Scholar 

  97. WilliamWhewell, The Philosophy of the Inductive Sciences (Founded on their History) (London: John Parker, 1840), pp. 428, 429.

    Google Scholar 

  98. WilliamWhewell, The Philosophy of the Inductive Sciences (Founded on their History) (London: John Parker, 1840), p. 429; emphasis in original.

    Google Scholar 

  99. WilliamWhewell, The Philosophy of the Inductive Sciences (Founded on their History), (London: John Parker, 1840), p. 430.

    Google Scholar 

  100. MichaelRuse, “The Scientific Methodology of William Whewell,” Centaurus, 20 (1976), 239.

    Google Scholar 

  101. Ibid., pp. 424, 425. A somewhat similar approach characterizes Jaeger, Lectures on the Principle of Symmetry.

  102. WilliamWhewell, The Philosophy of the Inductive Sciences (Founded on their History) (London: John Parker, 1840), pp. 428, 430.

    Google Scholar 

  103. Sachs, History of Botany, p. 135.

  104. Ibid., p. 128.

  105. AlphonsedeCandolle, Introduction a l'étude de botanique (Paris: Roret, 1824), I. 505.

    Google Scholar 

  106. AlphonsedeCandolle, Introduction a l'étude de botanique (Paris: Roret, 1824), p. 529.

    Google Scholar 

  107. AlphonsedeCandolle, Introduction a l'étude de botanique (Paris: Roret, 1824), p. 529.

    Google Scholar 

  108. FrançoisJacob, The Logic of Life, a History of Heredity (New York: Pantheon, 1974), chap. 2, esp. p. 83.

    Google Scholar 

  109. Jean Baptiste A. P. M.deLamarck, Philosophie zoologique, (Paris: Dentu, 1809), I, 105; emphasis in original.

    Google Scholar 

  110. Jean Baptiste A. P. M.deLamarck, Philosophie zoologique, (Paris: Dentu, 1809), p. 44.

    Google Scholar 

  111. Paul L.Farber, “The Type Concept in Zoology during the First Half of the Nineteenth Century,” J. Hist. Biol., 9 (1976), 100–105. The morphological type concept can be used within taxonomic groups — or without regard to such groups, in which case the primitive states of organs with serial homology may be determined (this is not discussed here, but see Guédès, “La théorie de la métamorphose ... de Candolle to Turpin,” pp. 258–259). The role of such typological thinking in idealistic systems, such as circular systems or a fully developed scala naturae, needs to be considered in more detail.

    Google Scholar 

  112. Christian H. B. A.Moquin-Tandon, “Considérations sur les irregularités de la corolle dans les dicotyledons,” Ann. Sci. Nat. (Paris), 27 (1832), 228, was early aware of the similarity. Henri Milne-Edwards, “Rapport sur un série des mémoires de M. A. de Quatrefages, relatif à l'organisation des animaux sans vertèbres des côtes de la manche,” Ann. Sci. Nat. (Paris), III. 1 (1844), 7, equated the primitive shape of a crystal with the “type essentiel” and the fundamental plan of organization. See also Auguste de Saint-Hilaire, Leçons de botanique comprenant principalement la morphologie végétale (Paris: P.-J. Loss, 1840), p. 651.

    Google Scholar 

  113. Susan F.Cannon, Science in Culture (New York: Dawson & Science History Publications, 1978), p. 17; see also Dov Ospovat, The Development of Darwin's Theory: Natural History, Natural Theology and Natural Selection (Cambridge: Cambridge University Press, 1981), chaps. 5 and 6, for an excellent discussion of typology in zoological work at this time.

    Google Scholar 

  114. See also T.Cahn, La vie et l'oeuvre d'Étienne Geoffroy Saint-Hilaire (Paris: Presses Universitaires de France, 1962), pp. 10–16.

    Google Scholar 

  115. Thomas H. Huxley commented not inappropriately that Cuvier and Geoffroy Saint-Hilaire “were meant to hunt in couples rather than pulling against one another.” RichardOwen, The Life of Richard Owen (London: John Murray, 1894), II, 296; Cuvier, Histoire des progrès, p. 40.

    Google Scholar 

  116. WalterZimmermann, Die Phylogenie der Pflanzen (Jena: Gustav Fischer, 1930), p. 8.

    Google Scholar 

  117. Sachs, History of Botany, p. 139. López, “La doctrina de la simetría”, p. 35, correctly observes that we see a change from intuition to analysis; intuition corresponds to Zimmermann's first period.

  118. William S.Macleay, “Remarks on the Identity of Certain General Laws Which Have Been Lately Observed to Regulate the Natural Distribution of Insects and Fungi,” Trans. Linn. Soc. London, 14 (1825), 46–68. The paper was read in 1822. Correia da Serra's paper on fruit types “Vues carpologiques,” is also compatible with de Candolle's ideas, as noted by Arber, The Natural Philosophy of Plant Form, p. 160.

    Google Scholar 

  119. William S.Macleay. Horae entomologicae, or Essays on the Annulose Animals (London: S. Bagster, 1819), on pp. 92 and 93 remarked that he and de Cassini had developed their ideas of circular classification independently.

    Google Scholar 

  120. Elias M.Fries, Systema mycologicum (Uppsala: Berlingiana, 1821 [1820]), I, xvii, xviii, Fries also compared affinity to salts having the same base but different acids, and analogy to isomorphous salts which differed in their bases (Systema orbis vegetabilis. Pars 1. Plantae homonemeae [Lund: Academia, 1825, p. 5; see the “chemical” formulas in Fries, Systema mycologicum, I, xii, xxvii-lvi).

    Google Scholar 

  121. RichardOwen, Lectures on the Comparative Anatomy and Physiology of the Invertebrate Animals (London: Longman, Brown, Green and Longmans, 1843); “Report on the Archetype and Homologies of the Vertebrate Skeleton,” Rep. Brit. Ass. Advancem. Sci. 1846, (1847), 241; an exceptional paper by Hugh E. Strickland, “On the Internal Relations of Organised Beings,” Quart. Rev. 1846 (1846), 354–364. Owen was a very close friend of Whewell (Owen, The Life of Richard Owen, II, 170), and other notable authors such as William B. Carpenter were familiar with the work of both Whewell and de Candolle. The influence of Whewell's methodology on that of Darwin has been discussed (Ruse, “The Scientific Methodology of William Whewell,” p. 227), while Macleay's quinarian system was very popular and much talked about in the 1830s. Huxley and Darwin, among others, were influenced by it (Sydney Smith, “The Darwin Collection at Cambridge with One example of Its Use: Charles Darwin and the Cirripedes,” Actes du Xie Congres Internationale d'Histoire des Sciences, [1965], pp. 96–100; Winsor, Starfish, pp. 81–97), and there is an especially lucid treatment of Darwin's reaction to Quinarianism in Ospovat, The Development of Darwin's Theory, pp. 101–113).

    Google Scholar 

  122. Owen, “Report on the Archetype,” p. 241.

  123. FrançoisJacob, The Logic of Life, a History of Heredity (New York: Pantheon, 1974), p. 100.

    Google Scholar 

  124. See, for instance, the tension in the Linnean Society of London in the 1830s (Andrew T.Gage, A History of the Linnean Society of London [London: Taylor & Francis, 1938], pp. 28–32, 37–39), and the development of meetings of scientific men, which were in part the manifestation of an effort to keep scientists at least cognizant of progress in branches of science other than their own. William V. Harcourt, “First Report — 1831. Proceedings of the General Meeting,” Rep. Brit. Ass. Advancem. Sci. 1831, 1832 (1833), pp. 28, 36; C. R. Weld, A History of the Royal Society (London: John W. Parker, 1848), II, 230–250; Cannon, Science in Culture, passim; Crosland, The Society of Arcueil, pp. 160, 161.

    Google Scholar 

  125. AlphonsedeCandolle, “Troisième mémoire sur la famille des Myrsinéacées.” Ann. Sci. Nat. Bot. 16 sér 2 (1841), pp. 148–168.

    Google Scholar 

  126. This relationship has passed practically unnoticed, although the article by FrancoisDagognet, “Valentin (sic) Haüy, Etiennne Geoffroy Saint-Hilaire, Augustin P. de Candolle: un conception d'ensemble mais aussi un ensemble des conceptions,” Rev. Hist. Sci., 25 (1972), pp. 333–335, is a notable exception; see also Pietro Corsi, “Models and Analogies for the Reform of Natural History: Features of the French Debate, 1790–1800,” in Lazzaro Spallanzani e la Biologia del Settecento, ed. W. Bernard: and A. La Vergata, (Florence: Olschki, 1982), p. 388. López, “La doctrina de la simetría,” briefly notes the incluence of Haüy on de Candolle and gives references to crystallography in the latter's work, but he does not fully develop the connection.

    Google Scholar 

  127. López, “La doctrina de la simetría,” p. 12, suggested that the doctrine of symmetry was essentially similar to the doctrine of position, but the latter is merely one of the criteria used in determining the former.

  128. Farber, “The Type Concept in Zoology,” p. 117.

  129. Augustin-PyramusdeCandolle, Théorie élémentaire de la botanique (Paris: Déterville, 1813), 2nd ed., p. 97; with emphasis in original.

    Google Scholar 

  130. As in de Candolle, Théorie élémentaire, 2nd ed., “Mémoire sur la famille des Crucifères”.

  131. De Candolle, Organographie végétale, II, 243; the comparison between his approach and that of Geothe, although apt, cannot have endeared him to the latter.

  132. Paul Gervais, “Discours,” pp. 171–174, in an anonymous essay, “Inauguration de buste de A. P. de Candolle dans le Jardin des Plantes de Montpellier le 4 Fevrier 1845,” Gaz. Méd. Montpellier, 14 (1854).

  133. Used in this sense, symmetry is basic to modern particle physics (G. l'Hoft, “Gauge Theories of the Forces between Elementary Particles,” Sci. Amer. [1980], 104–138). Some of Weyl's ideas have been developed in a biological context by E. S. Reed (“The Role of Symmetry in Ghiselin's ‘Radical Solution to the Species Problem,’” Syst. Zool., 28 [1979], 71–78). Reed suggests that transformation operations could be performed on the “symmetry” of the species. This symmetry was an “invariant pattern of change” (p. 75; emphasis in original) that was revealed by an analysis of the relations and the pattern of change and transformation of all features of an organism. The emphasis here is on change, but the similarity to Correia de Serra's ideas of 1805 is, mutatis mutantur, considerable.

  134. P. F.Stevens, “Augustin Augier's ‘Arbre botanique’ (1801), a Remarkable Early Representation of the Natural System,” Taxon, 32 (1983), 209–211.

    Google Scholar 

  135. Farber, “The Type Concept in Zoology,” p. 119.

  136. MichelFoucault, The Order of Things (New York: Pantheon, 1970), pp. 17–30 (trans. Les mots et les choses [Paris: Gallimard, 1960]), discussed a perhaps comparable series of semantic relationships in the sixteenth century between a set of words denoting types of resemblances and the underlying concept of signatures.

    Google Scholar 

  137. MichelFoucault, The Order of Things (New York: Pantheon, 1970), esp. pp. 132–136; see also Daudin, Cuvier et Lamarck, II, 264–275, who perhaps overestimates the dependence of thought on observation.

    Google Scholar 

  138. G.Erikkson, Elias Fries och den Romantiska biologien (Uppsala: Appelberg, 1962).

    Google Scholar 

  139. MichelFoucault, The Order of Things (New York: Pantheon, 1970), p. 69.

    Google Scholar 

  140. ReijerHooykaas, “Romé de l'Isle,” Dictionary of Scientific Biography (1972), XI, 520–524.

    Google Scholar 

  141. López, “La doctrina de la simetría,” pp. 18, 19, seems to have misunderstood de Candolle here.

  142. Cain, “Deductive and Inductive Methods,” p. 192; see de Candolle, Morphologie végétale, I, ix.

  143. De Cassini, “De l'influence d'avortements,” p. 342.

  144. Jean Baptiste A. P. M.deLamarck, Philosophie zoologique (Paris: Dentu, 1809), p. 166. There was considerable discussion on the relative importance of empiricism and idealism, analysis and synthesis, and the roles of hypotheses in early nineteenth-century science. By the 1830s the importance of unifying endeavors in natural philosophy was clear (Cannon, Science in Culture, p. 299). Approaches that resolutely avoided analogies or abstractions were seen to be flawed: C. G. Nees von Esenbeck, Handbuch der Botanik (Nüremberg: Johann Leonhard Schrag, 1821), pp. 65–69; John F. W. Herschel, Preliminary Discourse on the Study of Natural History (London: Longman et al., 1831), chap. 1; Edwin R. Lankester, Degeneration: A Chapter in Darwinism (London: Macmillan, 1880); Cahn, La vie et l'oeuvre d'Étienne Geoffroy Saint-Hilaire, pp. 272–283; Richard W. Burkhardt, The Spirit of System: Lamarck and Evolutionary Biology (Cambridge, Mass.: Harvard University Press, 1977), pp. 39–45. E. Nagel, The Structure of Science (New York: Harcourt, Brace and World, 1961), pp. 106–152, gives a useful treatment of the whole subject, including the role of proper and improper analogies (p. 108). See also Mary B. Hesse, Models and Analogies in Science (London and New York: Sheed & Ward, 1963), esp. pp. 64–76, 89–96. The discussion by L. Darden and M. Maull, “Interfield Theories,” Phil. Sci., 44 (1977), 43–64, although interesting, seems inappropriate for an analysis at this level or time.

    Google Scholar 

  145. There is an interesting relationship between Haüy and Lamarck. The latter was an inexperienced biologist when he wrote the Flore françoise, and he apparently did not write with great elegance. Buffon considered the flora as something of a reply to Linnaeus; he wanted someone to check Lamarck's style in the introduction that he thought was needed, being particularly sensitive in such matters (MarcelLandrieu, “Lamarck, le fondateur du transformisme, sa vie, son oeuvre,” Mém. Soc. Zool. Paris, 21 [1909], 29). Daubenton suggested Haüy as the appropriate person. Haüy, however, did far more than merely check the style (see also Daudin, Les méthodes de la classification, p. 191n1; Burkhardt, The Spirit of System, pp. 25, 52). “I cannot prevent myself from testifying here all that I owe to M. l'abbé Haüy ... for the services that he expressedly wished to give me in this work. I attest that the style is entirely his, and that he suggested some very felicitous ideas concerning the natural order that are discussed in the preliminary discourse” (Lamarck, Flore françoise, II, iv).

    Google Scholar 

  146. Burkhardt, The Spirit of system, pp. 52–58, 140–142; F. Stafleu, “Introduction” to A. L. de Jussieu, Genera plantarum (Weinheim: Kramer, 1964, reprint ed.), pp. xx–xxii. The “Introduction” was also published separately.

  147. HenriDaudin, Les méthodes de la classification et l'idée de série en botanique et en zoologique de Linné à Lamarck (1740–1790) (Paris: Felix Alcan, 1926), p. 233, made this observation, and it is abundantly clear when one reads the discussions on relationships in de Jussieu's Genera plantarum.

    Google Scholar 

  148. “The botanist, on the contrary [to the florist], uniquely attentive to study, to watch Nature, is happy to contemplate it in this original naive simplicity, without doubt more precious than the ornaments with which one can only embelish it by constraining it: he adopts only the nuances other than which do not change in an obvious way that constancy of the primitive forms; in a word, the individual which offers itself to him in his researches in never an isolated being in his eyes; it is seen by him at the type and model of the whole species, and he likes to find in it the unaffected, but true, characters which Nature has faithfully pronounced in the productions that completely belong to it.” (Lamarck, Flore françoise, I, 173, 174). This, however, is closer to an essentialistic, monothetic type concept than to the morphological, potentially (and, often, actually) polythetic type concept.

  149. For instance, CharlesDarwin, Origin of Species by Means of Natural Selection (London: John Murray: 1859), pp. 433–458, 485. See also Colin Patterson, “Significance of Fossils in Determining Evolutionary Relationships,” Ann. Rev. Ecol. Syst., 12 (1981), 199, 200, 202.

    Google Scholar 

  150. Sachs, History of Botany, p. 128. P. F. Stevens, “Metaphors and Typology in the Development of Botanical Systematics 1690–1960, or the Art of putting New Wine in Old Bottles,” Taxon, 33 (1984), deals with this problem in detail.

  151. Dagognet, “Valentin Haüy,” p. 327.

  152. JanetBrowne, “Darwin's Botanical Arithmetic and the Principle of Divergence, 1854–1858,” J. Hist. Biol., 13 (1980), 53–89; Sachs, History of Botany, p. 135; Ernst Mayr, “The Nature of the Darwinian Revolution,” Science, 176 (1972), 981–989, and The Growth of Biological Thought, p. 249; and especially Ospovat, The Development of Darwin's Theory. It is perhaps unnecessary to emphasize the importance of the discovery of kinds for the development of laws; see Nagel, The Structure of Science, pp. 30, 31n.1.

    Google Scholar 

  153. Cf. Ghiselin, “The Failure of Darwinism,” pp. 182, 183.

  154. This procedure is not without serious problems, as noted periodically by authors of the last century and more recently by Arthur J.Cain, “Logic and Memory in Linnaeus's System of Taxonomy,” Proc. Linn. Soc. London, 169 (1958), 161, 162; and Colin Patterson, “The Contribution of Paleontology to Teleostean Phylogeny,” in Major Patterns in Vertebrate Evolution, ed. M. K. Hecht, P. C. Goody, and B. M. Hecht (New York and London: Plenum, 1977), p. 632.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stevens, P.F. Haüy and A.-P. Candolle: Crystallography, botanical systematics, and comparative morphology, 1780–1840. J Hist Biol 17, 49–82 (1984). https://doi.org/10.1007/BF00397502

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00397502

Keywords

Navigation