Skip to main content
Log in

Aspects of inorganic nitrogen assimilation in yeasts

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Cultures of Candida utilis utilise glutamate in preference to ammonia and ammonia in preference to nitrate. The nitrate reductase of this organism is induced by nitrate and repressed in cultures grown on glutamate or ammonia. Nitrate-grown cultures of C. utilis, irrespective of the medium nitrate concentration, behave as though nitrogen-limited. In contrast to C. utilis, Saccharomyces cerevisiae utilises ammonia in preference to glutamate.

In eight yeasts studied the highest cellular contents of biosynthetic NADP-linked glutamate dehydrogenase were found in batch cultures containing low concentrations of ammonia or in nitrogen-limited chemostat cultures. NAD-linked glutamate dehydrogenase activity was detected in extracts of cells grown in the presence of glutamate but not in those grown in the presence of ammonia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barratt, R. W. 1963. Effect of environmental conditions on the NADP specific glutamic acid dehydrogenase in Neurospora crassa.—J. Gen. Microbiol. 33: 33–42.

    Google Scholar 

  • Brown, C. M. and Johnson, B. 1970. Influence of the concentration of glucose and galactose on the physiology of Saccharomyces cerevisiae in continuous culture.—J. Gen. Microbiol. 64: 279–287.

    Google Scholar 

  • Brown, C. M., Macdonald-Brown, D. S. and Meers, J. L. 1973. Physiological aspects of microbial inorganic nitrogen metabolism.—Advan. Microbial Physiol. 11: in press.

  • Brown, C. M. and Rose, A. H. 1969. Effects of temperature on composition and cell volume of Candida utilis.—J. Bacteriol. 97: 261–272.

    Google Scholar 

  • Brown, C. M. and Stanley, S. O. 1972. Environment-mediated changes in the cellular content of the “pool” constituents and their associated changes in cell physiology.—J. Appl. Chem. Biotechnol. 22: 363–389.

    Google Scholar 

  • Campbell, I. 1971. Numerical taxonomy of various genera of yeasts.—J. Gen. Microbiol. 67: 223–231.

    Google Scholar 

  • Downey, R. J. 1971. Characterisation of the reduced nicotinamide adenine dinucleotide phosphate-nitrate reductase of Aspergillus nidulans.—J. Bacteriol. 105: 759–768.

    Google Scholar 

  • Fawcett, J. K. and Scott, J. E. 1960. A rapid and precise method for the determination of urea.—J. Clin. Pathol. 13: 156–160.

    Google Scholar 

  • Garrett, R. H. and Nason, A. 1969. Further purification and properties of Neurospora nitrate reductase.—J. Biol. Chem. 244: 2870–2882.

    Google Scholar 

  • Hartelius, V. 1938. Vergleichende Untersuchungen über den Wert der Aminosäuren als Stickstoffquelle für Hefe.—Biochem. Z. 299: 317–333.

    Google Scholar 

  • Hierholzer, G. und Holzer, H. 1963. Repression der Synthese von DPN-abhängiger Glutaminsäuredehydrogenase in Saccharomyees cerevisiae durch Ammoniumionen.—Biochem. Z. 339: 175–185.

    Google Scholar 

  • Holzer, H. und Schneider, S. 1957. Anreicherung und Trennung einer DPN-spezifischen und einer TPN-spezifischen Glutaminsäure-dehydrogenase aus Hefe.—Biochem. Z. 329: 361–369.

    Google Scholar 

  • Jones, M., Pragnell, M. J. and Pierce, J. S. 1969. Absorption of amino acids by yeasts from a semi-defined medium simulating wort.—J. Inst. Brew. 75: 520–536.

    Google Scholar 

  • Lamminmaki, O. A. and Pierce, J. S. 1969. Activities of certain aminotransferases and NADP-dependent glutamic acid dehydrogenase in yeast during fermentation.—J. Inst. Brew. 75: 515–518.

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. 1951. Protein measurement by the Folin phenol reagent.—J. Biol. Chem. 193: 265–275.

    Google Scholar 

  • Millbank, J. W. 1969. Nitrogen fixation in moulds and yeasts — a reappraisal.—Arch. Mikrobiol. 68: 32–39.

    Google Scholar 

  • Millbank, J. W. 1970. The effect of conditions of low oxygen tension on the assay of nitrogenase in moulds and yeasts using the acetylene reduction technique.—Arch. Mikrobiol. 72: 375–377.

    Google Scholar 

  • Montgomery, H. A. C. and Dymock, J. F. 1961. The determination of nitrite in water.—Analyst (London) 86: 414–416.

    Google Scholar 

  • Pateman, J. A. and Cove, D. J. 1967. Regulation of nitrate reduction in Aspergillus nidulans. —Nature (London) 215: 1234–1237.

    Google Scholar 

  • Pichinoty, F. et Méténier, G. 1966. Contribution à l'étude de la nitrate-réductase assimilatrice d'une levure.—Ann. Inst. Pasteur 111: 282–313.

    Google Scholar 

  • Pichinoty, F. et Méténier, G. 1967. Régulation de la biosynthèse et localisation de la nitrateréductase d' Hansenula anomala.—Ann. Inst. Pasteur 112: 701–711.

    Google Scholar 

  • Polakis, E. S. and Bartley, W. 1965. Changes in enzyme activities of Saccharomyces cerevisiae during aerobic growth on different carbon sources.—Biochem. J. 97: 284–297.

    Google Scholar 

  • Sanwal, B. D. and Lata, M. 1961. The occurrence of two distinct glutamic dehydrogenases in Neurospora.—Can. J. Microbiol. 7: 319–328.

    Google Scholar 

  • Sanwal, B. D. and Lata, M. 1962. Effect of glutamic acid on the formation of two glutamic acid dehydrogenases of Neurospora.—Biochem. Biophys. Res. Commun. 6: 404–409.

    Google Scholar 

  • Schwencke, J. and Magaña-Schwencke, N. 1969. Derepression of a proline transport system in Saccharomyces chevalieri by nitrogen starvation.—Biochim. Biophys. Acta 173: 302–312.

    Google Scholar 

  • Silver, W. S. 1957. Pyridine nucleotide-nitrate reductase from Hansenula anomala, a nitrate reducing yeast.—J. Bacteriol. 73: 241–246.

    Google Scholar 

  • Sims, A. and Folkes, B. 1964. A kinetic study of the assimilation of 15N ammonia and the synthesis of amino acids in an exponentially growing culture of Candida utilis.—Proc. Roy. Soc. (London) B 159: 479–502.

    Google Scholar 

  • Surdin, Y., Sly, W., Sire, J., Bordes, A. M. et De Robichon-Szulmajster, H. 1965. Propriétés et contrôle génétique du système d'accumulation des acides aminés chez Saccharomyces cerevisiae.—Biochim. Biophys. Acta 107: 546–566.

    Google Scholar 

  • Tempest, D. W., Meers, J. L. and Brown, C. M. 1973. Glutamate synthetase (GOGAT); a key enzyme in the assimilation of ammonia by prokaryotic organisms, p. 167–182. In S. Prusiner and E. R. Stadtman (eds.), The enzymes of glutamine metabolism.—Academic Press. New York.

    Google Scholar 

  • Thomulka, K. W. and Moat, A. G. 1972. Inorganic nitrogen assimilation in yeasts: alteration in enzyme activities associated with changes in cultural conditions and growth phase. —J. Bacteriol 109: 25–33.

    Google Scholar 

  • Westphal, W. und Holzer, H. 1964. Synthese von NAD-abhängiger Glutamat-dehydrogenase in Protoplasten von Saccharomyces carlsbergensis.—Biochim. Biophys. Acta 89: 42–46.

    Google Scholar 

  • Wickerham, L. J. 1946. A critical evaluation of the nitrogen assimilation tests commonly used in the classification of yeasts.—J. Bacteriol. 52: 293–301.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burn, V.J., Turner, P.R. & Brown, C.M. Aspects of inorganic nitrogen assimilation in yeasts. Antonie van Leeuwenhoek 40, 93–102 (1974). https://doi.org/10.1007/BF00394557

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00394557

Keywords

Navigation