Skip to main content
Log in

An unwelcome discovery: The pole effect in the electric arc, a threat to early 20th century precision spectrometry

  • Published:
Archive for History of Exact Sciences Aims and scope Submit manuscript

Abstract

In late 1912, Fritz Goos at the Hamburg Physikalisches Staatslaboratorium discovered a systematic dependency of arc-spectra wavelengths on the length of the electric arc used and on its electric parameters, such as, for instance, the current employed. In early 1913, at Heinrich Kayser's better-equipped physical laboratory in Bonn, Goos was able to confirm these effects using a large concave Rowland grating. He was able to establish that variations of between 3 mm and 10 mm in the length of the arc produced wavelength differences of up to 0.02 Å violet shift and -0.007 Å redshift respectively. Further inquiry also revealed a dependency of the wavelength on the region of the arc selected for spectrometric observation. All these surprising effects were soon collectively named ‘pole effect’.

As is shown in this paper, the pole effect threatened the validity of the results of the entire research tradition of high-precision spectroscopy which, around 1910, had excelled in establishing several internally coherent systems of wavelength assignments. These wavelength catalogues had been established by spectroscopists such as Heinrich Kayser, Paul Eversheim and their co-workers in Bonn, by August Herman Pfund in Baltimore, and by Charles Fabry and Henri Buisson in Marseille under the aegis of the ‘International Union for Co-Operation in Solar Research’. They had all produced locally consistent, “homogeneous” systems of wavelengths with estimated errors sometimes smaller than 0.001 Å. However, long before 1913, strange non-local inconsistencies had emerged between these systems that were of much greater magnitude than the estimated error. The discovery of the pole effect opened up the possibility that variations in the arc parameters used in the measurements, which the different teams had hitherto not specified, were responsible for the systematic differences, in their respective sets of measurements, coming to up to 0.025 Å.

This paper explores the interrelations between local knowledge production, the strategies for the establishment of local coherence, and the ways in which the community of physicists and spectroscopists handled a possible threat to this coherence after 1913. Around 1930, a general agreement was reached about the physical cause of the pole effect, namely Stark effects, caused in turn by intermolecular electric fields of ions in the arc. Much before 1930, however, the community had already succeeded in standardizing the instrumentation used in high-precision spectrometry and had conformed its research practice to such an extent that from 1917 on the pole effect could be routinely circumvented in high-precision spectrometry and interferometry. Thus, experimentation along with its instrumentation, indeed had ‘a life of its own’, independent of the many unsuccessful efforts to explain the pole effect theoretically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Achinstein, Peter [1991] Particles and Waves. Historical Essays in the Philosophy of Science, (New York & Oxford: Oxford Univ. Press, 1991).

    Google Scholar 

  2. Adam, Magdalena [1932] ‘Der Poleffekt des Eisens’ und ‘Das Eisenspektrum in der Wasserstoffflamme’, Ann. Phys. (5) 15, 568–612, 613–618 (=extracts from Berlin Ph.D. thesis, reprint in Adam [1933]b).

    Google Scholar 

  3. Adam, Magdalena [1933]a ‘Nachteil und Vorteil der Dispersion im Plattenprisma der Lummer-Gehrcke-Platte’, ZtP, issue 1; reprint in [1933]b 50–64.

  4. Adam, Magdalena [1933]b Der Poleffekt des Eisens. Das Eisenspektrum der Wasserstoffflamme (Leipzig: Barth, 1933) (=Ph.D. thesis, Univ. Berlin, March 1, 1933, Advisors: E. Gehrcke & P. Pringsheim: contains complete reprints of Adam [1932] & [1933]a).

    Google Scholar 

  5. Anderson, John August [1917]a ‘A study of the Stark-effect’, Phys. Rev. (2) 9, 575–576.

    Google Scholar 

  6. Anderson, John August [1917]b ‘A method of investigating the Stark effect for metals, with results for Chromium’, AP. J. 46, 104–116 (=C.Mt.W. no. 134).

    Article  Google Scholar 

  7. Arnolds, Rudolf [1913/14] ‘Das Bogen- und Funkenspektrum von Zinn in I.A. von λ=7800 bis λ=2069rs', a) Ph.D. thesis, Univ. Bonn, (Leipzig: Barth, 1913) (Advisor: Kayser); b) excerpt in ZwPh 13 [1914], 313–332.

    Google Scholar 

  8. Ayrton, Hertha [1899] ‘The hissing of the electric arc’, Journal of the Proceedings of Electrical Engineers 28, 400–435, 438–450 (with discussion).

    Google Scholar 

  9. Ayrton, Hertha [1902]a ‘The mechanism of the electric arc’, PTRSL A 199, 299–336.

    Google Scholar 

  10. Ayrton, Hertha [1902]b The Electric Arc (London: The Electrician, 1902).

    Google Scholar 

  11. Babcock, Harold Delas [1924] ‘Secondary standards of wave-length’, Phys. Rev. (2) 24, 205.

    Google Scholar 

  12. Babcock, Harold Delas [1927]a ‘A study of the infra-red spectrum with the interferometer’, AP. J. 65, 140–162 and plate III.

    Article  Google Scholar 

  13. Babcock, Harold Delas [1927]b ‘Secondary standards of wave-length; interferometer measurements of iron and neon lines’, AP. J. 66, 256–282.

    Article  Google Scholar 

  14. Babcock, Harold Delas [1927]c ‘Pressure effect of iron-arc lines’, Phys. Rev. (2) 30, 366–367 (short version of Babcock [1928]).

    Google Scholar 

  15. Babcock, Harold Delas [1928] ‘The effect of pressure on the spectrum of the iron arc’, AP. J. 67, 240–261.

    Article  Google Scholar 

  16. Bachem, Albert [1910] ‘Das Bogenspektrum des Zirkons’, ZwPh 8, 316–332.

    Google Scholar 

  17. Born, Max [1932] Optik. Ein Lehrbuch der elektromagnetischen Lichttheorie, a) 1st ed. 1932; b) 2nd ed. 1962, c) 3rd ed. 1972.

  18. Brault, James William [1962] The Gravitational Redshift in the Solar Spectrum, Princeton Univ., PhD thesis (cf. the abstract in BAPS 8, 28).

  19. Brendel-Wirminghaus, Sophie [1921] ‘Der Poleffekt im Bogenspektrum des Mangans’, ZwPh 20, 229–256 (=PhD thesis, Univ. Bonn, Aug. 2, 1918, Advisor: Kayser).

    Google Scholar 

  20. Brose, E. [1919] ‘Stärke des elektrischen Feldes und Zerlegung der Wasserstofflinien vor der Kathode des Glimmstroms’, Ann. Phys. (4) 58, 731–752.

    Google Scholar 

  21. Buisson, Henri (Auguste) & Fabry, Ch. [1907] ‘Mesures de longueurs d'onde dans le spectre du fer pour l'établissement d'un système de repères spectroscopiques’, CRAS 14, 1155–1157 (=short version of Fabry & Buisson [1908]a.

    Google Scholar 

  22. Buisson, Henri (Auguste) & Fabry, Ch. [1908]a ‘Mesures de longueurs d'onde pour l'établissement d'un système de repères spectroscopiques’, J. de Phys. (4) 7, 168–195; b) Engl. version in AP. J. 28, 169ff.

    Google Scholar 

  23. Buisson, Henri (Auguste) & Fabry, Ch. [1908]c ‘Sur deux régimes différents de l'arc au fer’, CRAS 146, 1143–1145.

    Google Scholar 

  24. Buisson, Henri (Auguste) & Fabry, Ch. [1912]a ‘Sur la température des sources de lumière’, CRAS 154, 1349–1351.

    Google Scholar 

  25. Buisson, Henri (Auguste) & Fabry, Ch. [1912]b ‘Wellenlängen im Eisenspektrum’, Ann. Phys. (4) 38, 245–246 (=commentary to Eversheim [1911]).

    Google Scholar 

  26. Buisson, Henri (Auguste) & Fabry, Ch. [1913] ‘Sur les longueurs d'onde des raies du Krypton’, CRAS 156, 945–947.

    Google Scholar 

  27. Burns, Kevin [1913]a ‘The arc spectrum of iron’, LOB 8, no. 247, 27–42; b) in French: ‘Mesures interférentielles de longueurs d'onde dans le spectre’, J. Phys. (5) 3, 457–467; c) in German: ‘Das Bogenspektrum des Eisens’, ZwPh 12 [1913], 207–235; 13 [1914], 235–244.

    Google Scholar 

  28. Burns, Kevin [1923] ‘On the measurement of standard wavelengths’, JOSA 7, 419–437.

    Google Scholar 

  29. Burns, Kevin [1925] ‘The red neon lines’, JOSA 11, 301–310.

    Google Scholar 

  30. Burns, K., Meggers, W. F. & Merrill, Paul W. [1916] ‘Interference measurements of wave lengths in the iron spectrum (3233 Å–6750 Å)’, BBS 13, 245–272 (=no. 274).

    Google Scholar 

  31. Burns, K. & Walters, Francis M. [1929] ‘Wave-lengths and atomic levels in the spectrum of the vacuum iron arc’, PAO 6, issue no. 11, 159ff.

    Google Scholar 

  32. Crew, Henry [1943] ‘Henry Gordon Gale’, AP. J. 97, 85–88.

    Article  Google Scholar 

  33. Crew, H., Babcock, H. D., Burns, K., Campbell, W. W. & St. John, C. E. [1920] ‘Report of the Committee on standards of wave-lengths’, PNAS 6, 367–369.

    Google Scholar 

  34. Crew, H. & McCauly, George V. [1914] ‘Wave-lengths in the spectrum of the calcium arc in vacuo’, AP. J. 39, 29–38 and plate 1.

    Article  Google Scholar 

  35. Czudnochowski, Walther Biegon [1906] Das elektrische Bogenlicht, seine Entwicklung und seine physikalischen Grundlagen, (Leipzig: Hirzel, 1906).

    Google Scholar 

  36. Debye [Debije], Peter Joseph Wilhelm [1919] ‘Das molekulare elektrische Feld in Gasen’, Phys. Z. 20, 160–161.

    Google Scholar 

  37. Dempster, Arthur Jeffrey [1915] ‘Über die Breite von Spektrallinien’, Ann. Phys. (4) 47, 791–808.

    Google Scholar 

  38. Deppermann, Charles E. [1926] ‘Some studies of the Starkeffect’, AP. J. 63, 33–47 and plates I–II.

    Article  Google Scholar 

  39. Dhein, Peter Ernst [1912] Messungen am Funkenspektrum des Palladiums, a) PhD thesis, Univ. Bonn, 1912 (Advisor: Kayser): b) short version in ZwPh 11, 317–348.

  40. Dörries, Matthias [1995] ‘Heinrich Kayser as philologist of physics’, HSPS 26, 1–33.

    Google Scholar 

  41. Duffield, Walter Geoffrey [1916] ‘Consumption of carbon in the electric arc’, PRSL A 92, 122–143.

    Google Scholar 

  42. Eberhard, Gustav [1903] ‘Systematic errors in the wave-lengths of the lines of Rowland's solar spectrum’, Ap. J. 17, 141–144.

    Article  Google Scholar 

  43. Evans, E. J. [1909] ‘The arc spectrum of iron λ. 6855 to λ 7412’, AP. J. 29, 157–163.

    Article  Google Scholar 

  44. Eversheim, Paul [1907] ‘Bestimmung von Wellenlängen des Lichts zur Aufstellung eines Normalsystems’, a) ZwPh 5, 152–180; b) in Engl. transl.: ‘Determination of wave-lengths of light for the establishment of a standard system’, AP. J. 26, 172–190.

    Google Scholar 

  45. Eversheim, Paul [1909] ‘Wellenlängennormale im Eisenspektrum’, Ann. Phys. (4) 30, 815–839.

    Google Scholar 

  46. Eversheim, Paul [1910] ‘Measurements of wave-lengths of standard iron lines’, AP. J. 31, 76–77 (=Engl. version of [1909]).

    Article  Google Scholar 

  47. Eversheim, Paul [1911] ‘Weitere Messungen über Wellenlängennormale im Eisenspektrum’, Ann. Phys. (4) 36, 1071–1076.

    Google Scholar 

  48. Eversheim, Paul ‘Wellenlängennormale II. Ordnung im roten Teil des Eisenspektrums’, Ann. Phys. (4) 45, 454–456.

  49. Eversheim, Paul [1926] Wellenlängenmessungen des Lichtes im sichtbaren und unsichtbaren Spektralbereich, Braunschweig, Vieweg (Vieweg Collection 82).

    Google Scholar 

  50. Exner, Franz & Haschek, Eduard [1911/12] Die Spektren der Elemente bei normalem Druck, (Wien & Leipzig: Deuticke, Vols. 1 and 2, 1911; Vol. 3: 1912).

    Google Scholar 

  51. Fabry, Marie Paul Auguste Charles [1910] ‘Ees données numériques de la spectroscopic’, Scientia 7, 425–435.

    Google Scholar 

  52. Fabry, Marie Paul Auguste Charles [1923] Les applications des interférences lumineuses, Paris, Édition de la Revue d'optique théorique et instrumentale.

    Google Scholar 

  53. Fabry, Ch. & Buisson, H. [1906] ‘Mesures de longueurs d'onde dans le spectre du fer pour l'établissement d'un système de repères spectroscopiques’, CRAS 143, 165–167.

    Google Scholar 

  54. Fabry, Ch. & Buisson, H. [1908]a ‘Mesures de longueurs d'onde pour l'établissement d'un système de repères spectroscopiques’, TIUCSR 2, 138–170; b) in Engl. transl.: ‘Wave-length measurements for the establishment of a system of spectroscopic standards’, AP. J. 28, 169–196.

    Google Scholar 

  55. Fabry, Ch. & Buisson, H. [1908]c ‘Sur la présence des raies d'étincelle dans le spectre de l'arc’, CRAS 146, 751–754.

    Google Scholar 

  56. Fabry, Ch. & Buisson, H. [1910]a ‘Interférences produites par les raies noires du spectre solaire’, J. Phys. (4) 9, 197–205.

    Google Scholar 

  57. Fabry, Ch. & Buisson, H. [1910]b ‘Étude de quelques propriétés spectroscopiques et électriques de l'arc entre métaux’, J. Phys. (4) 9. 929–961.

    Google Scholar 

  58. Fabry, Ch. & Buisson, H. [1913] ‘Sur les étalons de longueur d'onde’, a) J. Phys. (5) 3, 613–622; b) TIUCSR 4, 61–73.

    Google Scholar 

  59. Fabry, Ch. & Pérot, A. [1901]a ‘Sur un nouveau modèle d'interféromètre; Ann. Chim. Phys. (7) 22, 564–574; b) in Engl. transl, in AP. J. 13, 265–272 and plate IX.

    Google Scholar 

  60. Fabry, Ch. & Pérot, A. [1901]c ‘Longueurs d'onde de quelques raies du fer’, CRAS 132, 1264–1266.

    Google Scholar 

  61. Fabry, Ch. & Pérot, A. [1902] ‘Mesures de longueurs d'onde en valeur absolue, spectre solaire et spectre du fer’, a) Ann. Chim. Phys. (7) 25, 98–139; b) in Engl. transl. ‘Measures of absolute wave-lengths in the solar spectrum and in the spectrum of iron’, AP. J. 15, 73–96, 261–273.

    Google Scholar 

  62. Fabry, Ch. & Pérot, A. [1904] ‘On the corrections to Rowland's wave lengths’, AP. J. 19, 119–120.

    Article  Google Scholar 

  63. Fizeau (Armand) Hippolyte & Foucault, L. [1844] ‘Recherches sur l'intensité de la lumière émise par le charbon dans l'éxpérience de Davy’, a) CRAS 18 [1844], 746–754 and ‘Addition’, ibid., 860–862; b) in Engl. transl.: ‘Researches on the intensity of light emitted by charcoal in Davy's experiment’, Electrical Magazine 1 [1845], 325–335.

    Google Scholar 

  64. Fleck, Ludwik [1935] Entstehung und Entwicklung einer wissenschaftlichen Tatsache. Einfuhrung in die Lehre vom Denkstil und Denkkollektiv, a) Stuttgart, Schwabe, 1935; b) edited by Lothar Schäfer and Thomas Schnelle, Frankfurt; Suhrkamp, 1980.

    Google Scholar 

  65. Fleming, J. A. [1890] ‘On electric discharge between electrodes at different temperatures in air and in high vacua’, PRSL 47, 118–126.

    Google Scholar 

  66. Foster, John Stuart [1930] ‘Some leading features of the Stark effect’, JFI 209, 585–624.

    Google Scholar 

  67. Foster, John Stuart [1939] ‘The Stark effect and some related phenomena’, Reports on Progress in Physics 5, 233–241.

    Article  Google Scholar 

  68. Foster, John Stuart [1962] ‘Stark effect’, in: J. Thowlis (Ed.) Encyclopedic Dictionary of Physics, (Oxford, Pergamon Press, 1962), Vol. 6, 822–824.

    Google Scholar 

  69. Foucault, (Jean Bernard) Léon [1849] ‘Lumière électrique’, a) Institut 17, 44–46; b) Procès-Verbaux de la Société Philomatique, 1849, 16; c) reprinted in Foucault [1878] 170–172.

    Google Scholar 

  70. Foucault, (Jean Bernard) Léon [1878] Recueil des Travaux scientifiques de Léon Foucault, publié par Madame veuve Foucault sa ère mis en ordre par C.-. Gariel et précédé d'une notice sur les oeuvres de L. Foucault par J. Bertrand, Paris, 2 Vols.

  71. Fowler, Alfred [1906/07] ‘Enhanced lines of iron in the region F to C’, MNRAS 67, 154–156.

    Google Scholar 

  72. Franklin, Alan [1986] The Neglect of Experiment, (Cambridge: Cambridge Univ. Press, 1986).

    Google Scholar 

  73. Frings, Joseph [1914/15] ‘Das Bogen- und Funkenspektrum des Silbers nach internationalen Normalen’, a) PhD thesis, Univ. Bonn, 1914 (Advisor: Kayser); b) short version in ZwPh 15, 165–182.

  74. Fuchs, Hans [1914] ‘Messungen am Bogenspektrum des Mangan nach den internationalen Normalen’, ZwPh 14, 263–280.

    Google Scholar 

  75. Füchtbauer, Chr. [1911] ‘Über eine Methode zur Untersuchung von Absorptionslinien mit dem Stufengitter und über die Veränderung von Absorptionslinien durch fremde Gase’, Phys. Z. 12, 722–725.

    Google Scholar 

  76. Füchtbauer, Chr. [1934] ‘Über Verbreiterung und Verschiebung von Absorptionslinien’, Phys. Z. 35, 975–977.

    Google Scholar 

  77. Füchtbauer, Chr. & Bartels, H. [1921] ‘Gesetzmäßigkeit bei der Absorption von Cäsiumlinien, samt Beispiel für die Bestimmung von Dampfdrucken durch Absorptionsmessungen’, Z. Phys. 4, 337–342.

    Google Scholar 

  78. Füchtbauer, Chr. & Gössler, F. [1933] ‘Verschiebung und unsymmetrische Verbreiterung von Absorptionslinien durch Fremdgase’, Z. Phys. 87, 89–104.

    Google Scholar 

  79. Füchtbauer, Chr. & Hoffmann, W. [1913] ‘Über Maximalintensität, Dämpfung und wahre Intensitätsverteilung von Absorptionslinien des Cäsiums’, Ann. Phys. (4) 43 [1914], 96–134.

    Google Scholar 

  80. Füchtbauer, Chr. & Joos, G. [1922] ‘Über Intensität und Verbreiterung von Spektrallinien’, Phys. Z. 23, 73–80.

    Google Scholar 

  81. Gale, Henry Gordon [1917] ‘On pole-effect’, AP. J. 45 142–144 (see also Royds [1917]b).

    Article  Google Scholar 

  82. Gale, Henry Gordon [1937] ‘Albert A. Michelson’, AP. J. 74, 1–9.

    Article  Google Scholar 

  83. Gale, H. G. & Adams, W. S. [1911] ‘The effect of gaseous pressures on the spectra of iron and titanium’, PASP 23, 264–265.

    Article  Google Scholar 

  84. Gale, H. G. & Adams, W. S. [1912] ‘An investigation of the spectra of iron and titanium under moderate pressure’, AP. J. 35, 10–47 (=C.Mt.W., no. 58).

    Article  Google Scholar 

  85. Gale, H. G. & Adams, W. S. [1913] ‘On the pressure-shift of iron lines’, AP. J. 37, 391–394.

    Article  Google Scholar 

  86. Gale, H. G. & Miller, L. F. [1921] ‘Pressure shifts in a calcium arc’, Phys. Rev. (2) 17, 428–429.

    Google Scholar 

  87. Gale, H. G. & Whitney, W. [1916] ‘On the pole-effect in a calcium arc’, AP. J. 43, 161–166.

    Article  Google Scholar 

  88. George, Hans [1913] Das Bandenspektrum des Baryumfluorids im elektrischen Bogen, sowie die Baryumlinien von 7059 bis 8210 A.-E., a) PhD thesis, Univ. Bonn (Advisor: Kayser); b) extract in: ZwPh 12, 237–258.

  89. Goos, (Hermann) Fritz (Gustav) [1908] Der spektroskopische Doppelstern Capella, a) PhD thesis, Univ. Bonn (Advisor: Küstner); b) (Bonn: Georgi, 1908).

  90. Goos, (Hermann) Fritz [1911] ‘Über die Dispersion und die Ausmessung von Konkavgitterspektrogrammen’, ZwPh 10, 200–208.

    Google Scholar 

  91. Goos, (Hermann) Fritz [1912]a ‘Wellenlängen-Normalen aus dem Bogenspektrum des Eisens im int. System’, ZwPh 11, 1–12, 305–316; b) in Engl. transl.: ‘Standard wave-lengths in the arc spectrum of iron, reduced to the international unit’, AP. J. 35, 221–232.

    Google Scholar 

  92. Goos, (Hermann) Fritz [1912]c ‘Eine neue Form des Fabry-Pérotschen Interferometers mit veränderlichem Plattenabstand’, ZfI 32, 326–328.

    Google Scholar 

  93. Goos, (Hermann) Fritz [1913] ‘Ein weiterer Beitrag zur Festlegung eines Normalsystems von Wellenlängen im Bogenspektrum’, a) ZwPh 12, 259–275; b) in Engl. transl.: ‘A further contribution toward the establishment of a normal system of wave-lengths in the arc-spectrum of iron’, AP. J. 38, 141–157.

    Google Scholar 

  94. Goos, (Hermann) Fritz [1914] ‘Wellenlängen aus dem Bogenspektrum des Eisens im internationalen System. 1. Teil: λ 3370–4233’, AN 199, cols. 33–44.

    Google Scholar 

  95. Grünter, Rainer [1913/14] ‘Das Bogen- und Funkenspektrum von Aluminium im I.A.’, a) PhD thesis, Univ. Bonn, (Leipzig: Barth, 1913) (Advisor Kayser); b) extract in ZwPh 13, 1–19.

    Google Scholar 

  96. Hacking, Ian [1983] Representing and Intervening. Introductory Topics in the Philosophy of Natural Science, (Cambridge: CUP, 1983).

    Google Scholar 

  97. Hagenbach, August [1909] ‘Spektroskopische Untersuchungen des Bogens unter vermindertem Druck’, Phys. Z. 10, 649–657.

    Google Scholar 

  98. Hagenbach, August [1917] ‘Lichtbogen’, Handbuch der Radiologie, edited by Marx, Leipzig, 4, 211–444.

  99. Hale, George Ellery [1904] ‘Co-operation in solar research’, AP. J. 20, 306–312.

    Article  Google Scholar 

  100. Hamm, Siegmund [1913/14] Messungen im Bogenspektrum des Nickels nach Internationalen Normalen, a) PhD thesis, Univ. Bonn, July 25, 1913 (Advisor: Kayser); b) (Leipzig: Teubner, 1914); c) extract in ZwPh 13 [1914], 105–130.

  101. Hampe, Heinrich [1913/14] ‘Messungen im Bogen und Funkenspektrum des Strontiums nach der internationalen Normalen’, a) PhD thesis, Univ. Bonn, (Advisor Kayser), (Leipzig: Barth); b) in short version: ZwPh 13, 348–368.

    Google Scholar 

  102. Hanot, Mme. [1927] ‘Élargissement des raies de Balmer par le champ électrique intermolèculaire’, CRAS 184, 281–284 (and in Ann. de Phys. (10) 8, 555ff.).

    Google Scholar 

  103. Harris, Roscoe Everett [1924] ‘Pole-Effects and pressure shifts in the lines of the spectra of zinc and calcium’, AP. J. 59, 261–273.

    Article  Google Scholar 

  104. Hartmann, Johannes [1899] ‘Apparat und Methode zur photographischen Messung von Flächenhelligkeiten’, ZfI 19, 97–103.

    Google Scholar 

  105. Hartmann, Johannes [1903] ‘A revision of Rowland's system of wave-lengths’, AP. J. 18, 167–190.

    Article  Google Scholar 

  106. Hartmann, Johannes [1904] ‘The correction of the standards of wave-lengths’, AP. J. 20, 41–48.

    Article  Google Scholar 

  107. Hartmann, Johannes [1906] ‘Vorschläge für die Schaffung neuer WellenlängenNormalen’, TIUCSR 1, 83–86.

    Google Scholar 

  108. Hartmann, Johannes [1908] ‘A revision of Rowland's system of wave-lengths’, AP. J. 18, 167–190.

    Article  Google Scholar 

  109. Hartmann, Johannes [1916] ‘Tabellen für das Rowlandsche und das internationale Wellenlängensystem’, Abhandlungen der Akademie der Wissenschaften, Göttingen, math, physical class, New series 10, 1st issue, 1–78.

    Google Scholar 

  110. Hearnshaw, J. B. [1996] The Measurement of Starlight. Two Centuries of Astronomical Photometry, (Cambridge: CUP, 1996).

    Google Scholar 

  111. Hentschel, Klaus [1992] ‘Grebe/Bachems photometrische Analyse der Linienprofile und die Gravitations-Rotverschiebung: 1919 bis 1922’, Ann. Sci. 49, 21–46.

    Google Scholar 

  112. Hentschel, Klaus [1993]a ‘The conversion of St. John — A case study on the interplay of theory and experiment’, Science in Context 6, 1, 137–194.

    Google Scholar 

  113. Hentschel, Klaus [1993]b ‘The discovery of the redshift of solar Fraunhofer lines by Rowland and Jewell in Baltimore around 1890’, IISPS 23, 2, 219–277.

    Google Scholar 

  114. Hentschel, Klaus [1995] Zum Zusammenspiel von Instrument, Experiment und Theorie am Beispiel der Rotverschiebung im Sonnenspektrum und verwandter spektraler Verschiebungseffekte von ca. 1880 bis etwa 1960, unpublished Habilitation thesis, May 1995.

  115. Hentschel, Klaus [1997] The Einstein Tower, Stanford: Stanford Univ. Press.

    Google Scholar 

  116. Hermann, Armin (Ed.) [1965] Der Stark-Effekt, Stuttgart, Battenberg.

    Google Scholar 

  117. Hoeltzenbein, Sophie [1916] ‘Messungen im Bogenspektrum des Eisens zwecks Bestimmungen tertiärer Normalen’, ZwPh 16, 225–253.

    Google Scholar 

  118. Holtsmark, Johan (Peter) [1919]a ‘Über die Verbreiterung von Spektrallinien’, Ann. Phys. (4) 58, 577–630.

    Google Scholar 

  119. Holtsmark, Johan (Peter) [1919]b ‘Über optische Absorptionskanten’, Phys. Z. 20, 88–92 and plate II.

    Google Scholar 

  120. Holtsmark, Johan (Peter) [1919/24] ‘Über die Verbreiterung von Spektrallinien’, a) Phys. Z. 20, 162–168, b) 25, 73–84 (see also Holtzmark & Trumpy [1925]).

    Google Scholar 

  121. Holtsmark, Johan (Peter) [1925] ‘Über die Absorption in Na-Dampf’, Z. Phys. 34, 722–729.

    Google Scholar 

  122. Holtsmark, Johan (Peter) & Trumpy, B. [1925] ‘Über die Verbreiterung von Spektrallinien. III’, Z. Phys. 31, 803–812 (=continuation of Holtzmark [1919/24]).

    Google Scholar 

  123. Holtz, Oswald [1913] Messungen im Bogen- und Funkenspektrum des Calciums nach den internationalen Normalen, a) PhD thesis, Univ. Bonn (Advisor Kayser), b) extract in ZwPh 12, 101–122.

  124. Howell, Janet Tucker [1916] The effect of an electric field on the lines of calcium and lithium’, AP. J. 44, 87–102.

    Google Scholar 

  125. Hufbauer, Karl [1991] Exploring the Sun. Solar Science since Galileo, (Baltimore & London: Johns Hopkins Univ. Press, 1991).

    Google Scholar 

  126. Hulburt, Edward Olson [1922] ‘The broadening of the Balmer lines of hydrogen with pressure’, AP. J. 55, 399–405 and plate VII.

    Google Scholar 

  127. Hulburt, Edward Olson [1923] ‘The distribution of intensity in the broadened Balmer lines of hydrogen’, a) Phys. Rev. (2) 21, 474–475; b) 22, 24–36 and plate I.

    Google Scholar 

  128. Janicki, Ludwig [1914] ‘Wellenlängennormalen dritter Ordnung aus dem Bogenspektrum des Eisens von λ 4282 bis λ 4903’, ZwPh 13, 173–185.

    Google Scholar 

  129. Jewell, Lewis E. [1896]a ‘The coincidence of solar and metallic lines. A study of the appearance of lines in the spectra of the electric arc and the sun’, AP. J. 3, 89–113; b) abstract in J. Phys. (3) 6, 84–85.

    Article  Google Scholar 

  130. Jewell, Lewis E. [1896]c ‘Mr Jewell's researches on the solar rotation’, AP. J. 4, 138.

    Article  Google Scholar 

  131. Kasper, Franz Joseph [1911/12] Messungen am Silberspektrum, a) PhD thesis, Univ. Bonn (Advisor: Kayser), b) extract in ZwPh 10, 53–62.

  132. Kayser, Heinrich (Gustav Johannes) [1900]a ‘Normalen aus dem Bogenspectrum des Eisens’, Ann. Phys. (4) 3 [1900], 195–203; b) in Engl. transl.: ‘Standard lines in the arc spectrum of iron’, AP. J. 13 [1901], 329–335.

    Google Scholar 

  133. Kayser, Heinrich (Gustav Johannes) [1900]c Handbuch der Spektroskopie, (Leipzig: Hirzel, Vol. 1).

    Google Scholar 

  134. Kayser, Heinrich (Gustav Johannes) [1904]a ‘Über Wellenlängen-Normalen’, ZwPh 2, 49–57; b) in Engl. transl. ‘On standards of wave-lengths’, AP. J. 19, 157–161.

    Google Scholar 

  135. Kayser, Heinrich (Gustav Johannes) [1904]c ‘New standards of wave-length’, AP. J. 20, 327ff.; d) Phil. Mag. (6) 8, 568ff.

    Google Scholar 

  136. Kayser, Heinrich (Gustav Johannes) [1906] ‘Neue Wellenlängen-Normalen’, TIUCSR 1, 80–82.

    Google Scholar 

  137. Kayser, Heinrich (Gustav Johannes) [1908]a ‘Zur Hypothese der geschichteten Struktur der Bogenflamme’, ZwPh 6, 68–71.

    Google Scholar 

  138. Kayser, Heinrich (Gustav Johannes) [1908]b ‘Zur Ermittelung neuer Wellenlängennormalen’, TIUCSR 2, 171–174.

    Google Scholar 

  139. Kayser, Heinrich (Gustav Johannes) [1910]a ‘Standards of third order of wave-lengths on the international system’, AP. J. 32, 217–225.

    Article  Google Scholar 

  140. Kayser, Heinrich (Gustav Johannes) [1910]b Handbuch der Spektroskopie, (Leipzig: Hirzel, Vol. 5, esp. 446ff. ‘Eisen’).

    Google Scholar 

  141. Kayser, Heinrich (Gustav Johannes) [1911]a ‘Normalen aus dem Bogenspektrum des Eisens im internationalen Vergleich’, ZwPh 9, 173–185.

    Google Scholar 

  142. Kayser, Heinrich (Gustav Johannes) [1911]b [Report of the Committee on standards of wavelengths], TIUCSR 3, 30–36 and discussion, 36ff., 139–148.

    Google Scholar 

  143. Kayser, Heinrich (Gustav Johannes) [1913] ‘Bericht über den gegenwärtigen Stand der Wellenlängen-Messungen’, a) ZwPh 12, 296–308; b) TIUCSR 4, 42–58.

    Google Scholar 

  144. Kayser, Heinrich (Gustav Johannes) [1924] Handbuch der Spektroskopie, (Leipzig: Hirzel, Vol. 7, part 1; together with H. Konen; esp. 405ff. ‘Eisen’).

    Google Scholar 

  145. Kayser, Heinrich (Gustav Johannes) [1936] Erinnerungen aus meinem Leben [typescript, c. 1936], edited by M. Dörries & K. Hentschel, Munich: Deutsches Museum, 1996 (Algorismus, 18).

    Google Scholar 

  146. Kayser, H., Ames, J. S., Buisson, H. & Paschen, F. [1914] ‘Secondary standards of wave-length, international system, in the arc spectrum of iron, adopted by the solar union, 1913’, AP. J. 39, 93–94.

    Google Scholar 

  147. Kayser, H. & Eversheim, P. [1913] ‘Das physikalische Institut der Universität Bonn’, Phys. Z. 14, 1001–1008.

    Google Scholar 

  148. Kayser, H., Fabry, Ch. & Ames, J. S. [1910] ‘Secondary standards of wave-length, international system, in the arc spectrum of iron’, AP. J. 32, 215–216; 33, 85.

    Article  Google Scholar 

  149. Kilby, Clinton Maury [1909] ‘Redetermination of the wave-lengths of the arc and the spark lines of Titanium, Manganese, and Vanadium; the effect of capacity and self-induction on the wave-lengths of the spark-lines’, AP. J. 30, 243–266.

    Article  Google Scholar 

  150. Kimura, Masamichi & Nakamura, Gisaburo [1923] ‘The broadening of spectral lines caused by increased current density and their Stark effects’, JJP 2, 61–75 and plate III–IV.

    Google Scholar 

  151. King, Arthur Scott [1903] ‘Some effects of change of atmosphere on arc spectra with reference to series relations’, AP. J. 18, 129–150.

    Google Scholar 

  152. King, Arthur Scott [1908] ‘An electric furnace for spectroscopic investigations, with results for the spectra of Titanium and Vanadium’, AP. J. 28, 300–314 (=C.Mt.W. no. 28).

    Article  Google Scholar 

  153. King, Arthur Scott [1911] ‘The effect of pressure upon electric furnace spectra’, AP. J. 34, 37–56 (=C.Mt.W. no. 53).

    Google Scholar 

  154. King, Arthur Scott [1912] ‘The effect of pressure upon electric furnace spectra. Second paper’, AP. J. 35, 183–212 (=C.Mt.W. no. 60).

    Article  Google Scholar 

  155. King, Arthur Scott [1915]a ‘The tube-arc spectrum of iron and a comparison with dissymmetries in spark spectra’, AP. J. 41, 373–394 (compare also PNAS 1).

    Google Scholar 

  156. King, Arthur Scott [1915]b ‘Unsymmetrical lines in tube arc and spark spectra as an evidence of a displacing action in these sources’, PNAS 1, 371–373; c) CMWO, no. 9.

    Google Scholar 

  157. King, A. S. & Koch, Peter Paul [1914] ‘An application of the registering microphotometer to the study of certain types of laboratory spectra’, AP. J. 39, 213–229 (=C.Mt.W. no. 77).

    Google Scholar 

  158. Klein, Arthur H. [1974] The Science of Measurement. A Historical Survey, a) New York: Simon & Schuster, 1974; b) New York: Dover, 1988.

    Google Scholar 

  159. Klein, Fritz [1913] Das Bogen- und Funkenspektrum von Blei in I.A. (λ. = 7228 bis λ = 2088), a) PhD thesis, Univ. Bonn (Advisor: Kayser), b) extract in ZwPh 12, 16–30.

  160. Kleinewefers, W. [1927] ‘Neumessung an Normalen zweiter Ordnung aus dem Bogenspektrum des Eisens von λ 5167 bis λ 6678 Å-E’, Z. Phys. 42, 211–221 (=continuation of Wallerath [1924]).

    Google Scholar 

  161. Koch, Peter Paul [1912] ‘Über ein registrierendes Mikrophotometer’, Ann. Phys. (4) 39, 705–751.

    Google Scholar 

  162. Kochen, Ernst August [1907] ‘Der rote Teil des Eisenbogenspektrums’, ZwPh 5, 285–299.

    Google Scholar 

  163. Kösters, W. [1927] ‘Anwendungen der Interferenzen zu Meßzwecken’, in Gehrcke (Ed.) Handbuch der Optik [1927/28], Vol. 1, 471–498.

  164. Konen, Heinrich [1928] ‘Wellenlängenmessung’, HbdP 19, 777–801.

    Google Scholar 

  165. Ladenburg, Rudolf [1929] ‘Einfluß elektrischer Felder auf Spektrallinien [Starkeffekt]’, in Müller-Pouillets Lehrbuch der Physik, 11th ed., Vol. 2,2, chap. 40, 2231–2292.

  166. Lang, Joseph [1914/16] Über veränderliche Linien im Bogenspektrum des Eisens, a) PhD thesis. Univ. Bonn (Advisor: Kayser), Bonn, Rhenania, 1914; b) short version: ZwPh 15 [1916], 223–252.

  167. Laue, Max von & Pringsheim, P. [1922] ‘St. Johns und Babcocks Beobachtungen über die Rotverschiebung in den Spektrallinien auf der Sonne’, Natw. 10, 330–331 (=commentary to St. John & Babcock [1917]).

    Google Scholar 

  168. Lee, Oliver K. [1911] ‘Effects of variations of vapor-density on the calcium lines H, K and g (λ 4227)’, AP. J. 34, 397–403 and plate XIX.

    Article  Google Scholar 

  169. Lockyer, Joseph Norman [1897] ‘Further observations of enhanced lines’, PRSL 61, 441–444.

    Google Scholar 

  170. McGucken, William [1969] Nineteenth-Century Spectroscopy. Development of the Understanding of Spectra, (Baltimore: Johns Hopkins University Press, 1969).

    Google Scholar 

  171. Maier, Clifford L. [1981] The Role of Spectroscopy in the Acceptance of the Internally Structured Atom, 1860–1920, (New York: Arno Press, 1981) (=reprint of PhD thesis, 1964).

    Google Scholar 

  172. Meadows, Arthur Jack [1972] Science and Controversy. A Biography of Sir Norman Lockyer, (London: MacMillan, 1972).

    Google Scholar 

  173. Merton, Thomas Ralph [1915]a ‘On the application of interference methods to the study of the origin of certain spectrum lines’, ibid., 421–431.

    Google Scholar 

  174. Merton, Thomas Ralph [1915]b ‘On the structure of broadened spectrum lines’, PRSL A 92, 322–328 and plate 4.

    Google Scholar 

  175. Merton, Thomas Ralph [1915]c ‘The spectra of hydrogen and helium’, Nature 95, 65.

    Google Scholar 

  176. Merton, Thomas Ralph [1919] ‘On the electrical resolution and broadening of Helium lines’, PRSL A 95, 30–38.

    Google Scholar 

  177. Michelson, Albert Abraham [1891/92] ‘On the application of interference methods to spectroscopic measurements’, a) Phil. Mag. (5) 31 [1891], 338–346; 34 [1892], 280–299; b) Smithsonian Contributions to Knowledge 29 [1903], 5–24 and plate I–IV.

    Google Scholar 

  178. Michelson, Albert Abraham [1893] ‘Comparaison du mètre international avec la longueur d'onde de la lumière du cadmium’, CRAS 116, 790–794.

    Google Scholar 

  179. Michelson, Albert Abraham [1894] ‘Les méthodes interférentielles en métrologie et l'établissement d'une longueur d'onde comme unité absolue de longueur’, J. Phys. (3) 3, 5–22.

    Google Scholar 

  180. Michelson, Albert Abraham [1895] ‘Détermination expérimentale de la valeur du mètre en longueurs d'ondes lumineuses’, TMBIPM 11, 1–85.

    Google Scholar 

  181. Mierdel, Georg [1932] ‘Lichtbogen’, Handwörterbuch der Naturwissenschaften, 2nd ed. Jena, 6, 196–216.

    Google Scholar 

  182. Mierdel, Georg [1933] ‘Elektrizitätsleitung in Gasen’, ibid., 3, 359–376.

    Google Scholar 

  183. Minkowski, Rudolf [Leo Bernhard] [1929] ‘Starkeffekt’, HdP 21, chap. 8, 389–439.

    Google Scholar 

  184. Monk, George Spencer [1923] ‘Pole-effects, pressure shifts, and measurements of wave-lengths in the spectrum of manganese’, AP. J. 57, 222–233.

    Article  Google Scholar 

  185. Monk, George Spencer [1925] ‘Secondary standards of wave-length in the spectra of neon and iron’, AP. J. 62, 375–386.

    Google Scholar 

  186. Mrowka, Bernhard [1939] ‘Starkeffekt’ in: Hand- und Jahrbuch der chemischen Physik, edited by Arnold Eucken & Karl Ludwig Wolf, Vol. 10, sec. III A.

  187. Müller, Friedrich [1922] ‘Beitrag zur Aufstellung des Systems internationaler Wellenlängen’, ZwPh 22, 1–20.

    Google Scholar 

  188. Nacken, Andreas [1913] Über Messungen im Magnesiumspektrum nach internationalen Normalen, a) PhD thesis, Univ. Bonn (Advisor: Kayser); (Leipzig: Barth); b) extract in ZwPh 12, 54–64.

    Google Scholar 

  189. Nagaoka, Hantaro & Sugiura, Yoshikatsu [1923]a ‘Easy method of observing the Stark-effect’, Nature 111, 431.

    Google Scholar 

  190. Nagaoka, Hantaro & Sugiura, Yoshikatsu [1923]b ‘Vacuum arc for obtaining spectra extending from visible light to soft x-rays’, AP. J. 57, 86–91 and plate III.

    Google Scholar 

  191. Nagaoka, Hantaro & Sugiura, Yoshikatsu [1924] ‘Distribution of electric field in metal arcs and the Stark effect, observed in arcs of Silver, Copper, Magnesium, Chromium, Nickel, Cobalt, Iron and ten other metals’, Japanese Journal of Physics 3, 45–73 and plates III–XVII.

    Google Scholar 

  192. Nicholson, John William& Merton, Thomas Ralph [1916] ‘On the distribution of intensity in broadened spectrum lines’, PTRSL A 216, 459–488 and plate II.

    Google Scholar 

  193. Nicholson, John William & Merton, Thomas Ralph [1920/21] ‘On the effect of asymmetry on wave-length determinations’, PRSL A 98, 261–263.

    Google Scholar 

  194. Orthmann, Wilhelm [1925] ‘Über die Stoßdämpfung der Quecksilberresonanzlinie’, Ann. Phys. (4) 78, 601–640.

    Google Scholar 

  195. Panter, S. F. & Foster, J. [1937] ‘Stark-Effect in iron and the contrast with pole effect’, PRSL A 162, 336–348 and plate 17–18.

    Google Scholar 

  196. Papenfus, Franz [1911] ‘Die Brauchbarkeit der Koinzidenzmethode zur Messung von Wellenlängen’, ZwPh 9, 332–346, 349–360.

    Google Scholar 

  197. Paschen, Friedrich [1926] ‘Serienenden und molekulare Felder’, SB. Berlin, 135–141 and plate I.

  198. Petersen, Max & Green, Jerome B. [1925] ‘Wave-lengths and pressure-shifts in the spectrum of magnesium’, AP. J. 62, 49–60.

    Article  Google Scholar 

  199. Pfund, August Herman [1908]a ‘A redetermination of the wave-lengths of standard iron lines’, AP. J. 28, 197–211.

    Google Scholar 

  200. Plckhan, H. [1914] Untersuchungen des Systems der Eisennormalen in den Bereichen λ = 2936 bis λ = 3248 und λ = 4404 bis λ = 4878, PhD thesis, Univ. Münster.

  201. Pollock, James H. [1909] ‘A note on the electron theory of the carbon arc’, Phil. Mag. (6) 17, 361–366.

    Google Scholar 

  202. Reich, M. [1903] On Gustaf Granquist: ‘Über die Bedeutung des Wärmeleitungsvermögens der Elektroden bei dem elektrischen Lichtbogen’ [Uppsala. 1902], Phys. Z. 4, 537–539.

    Google Scholar 

  203. Reich, M. [1906] ‘Über Größe und Temperatur des negativen Lichtbogenkraters’, Phys. Z. 7, 73–89.

    Google Scholar 

  204. Ritter, M. [1919] ‘Beobachtungen über den Effekt des elektrischen Feldes, die Druckverschiebung und die Verbreiterung von Serienlinien’, Ann. Phys. (4) 59, 170–184.

    Google Scholar 

  205. Rowland, Henri Augustus [1883]a ‘On concave gratings for optical purposes’, Phil. Mag. (5) 16, 197–210; b) AJS (3) 26, 87–98; c) reprint in Rowland [1902] 492–504.

    Google Scholar 

  206. Rowland, Henri Augustus [1886] Photographic Map of the Solar Spectrum, Baltimore, Johns Hopkins Univ.

    Google Scholar 

  207. Rowland, Henri Augustus [1888] Photographic Map of the Normal Solar Spectrum, made with the Concave Grating;, 2nd Series, (Baltimore: Johns Hopkins Univ., with 10 plates); see also JHUC 8, no. 73, 80.

    Google Scholar 

  208. Rowland, Henri Augustus [1889]a ‘Table of standard wave-lengths’, JHUC 8, no. 73, 69, 78–79; b) Phil. Mag. (5) 27, 479–484; c) reprinted in Rowland [1902], 517–519.

    Google Scholar 

  209. Rowland, Henri Augustus [1889]d ‘Standard wave-lengths in ordinary air at 20 C and 760 mm pressure’, JHUC 8, no. 73.

  210. Rowland, Henri Augustus [1889]e Photographic Map of the B and D Lines and Carbon Bands of the Solar Spectrum, Baltimore (with 6 plates).

  211. Rowland, Henri Augustus [1893]a ‘Gratings in theory and practice’, Phil. Mag. (5) 35, 397–419; b) Astronomy and Astrophysics 12, 129–149.

    Google Scholar 

  212. Rowland, Henri Augustus [1893]c ‘A new table of standard wave-lengths’, Phil. Mag. (5) 36, 49–75; d) Astronomy and Astrophysics 12, 321–347; e) JHUC no. 106, 110ff.; f) reprinted in Rowland [1902], 545–547.

    Google Scholar 

  213. Rowland, Henri Augustus [1895] ‘Preliminary Table of Solar Spectrum Wave-Lengths’, a) AP. J. 1, 29–46, 131–145, 222–231, 295–304, 377–392; 2, 45f., 109f., 188f., 306f., 360f., 3, 141f., 201f., 356f., 4, 106f., 278f., 5, 11f., 109f., 181f.; b) as separatum: Chicago, Univ. of Chicago Press, 1896.

    Article  Google Scholar 

  214. Rowland, Henri Augustus [1896] ‘A new table of standard wave-lengths’, a) MAAAS 12, 101–178 (=complete version of Rowland [1893]c); b) partially reprinted in Rowland [1902] 548–564. Rowland, Henri Augustus [1902] Physical Papers, (Baltimore: Johns Hopkins Univ., 1902).

    Google Scholar 

  215. Royds, Thomas [1908] ‘The constitution of the electric spark’, PTRSL A 208, 333–347 and plate 28–29.

    Google Scholar 

  216. Royds, Thomas [1910] ‘Further experiments on the constitution of the electric spark’, Phil. Mag. (6) 19, 285–290 and plate IV.

    Google Scholar 

  217. Royds, Thomas [1914]a ‘A preliminary note on the displacement to the violet of some lines in the solar spectrum’, KOB 38, 59–70.

    Google Scholar 

  218. Royds, Thomas [1914]b ‘An investigation of the displacement of unsymmetrical lines under different conditions of the electric arc’, KOB 40, 83–93 and plate I.

    Google Scholar 

  219. Royds, Thomas [1917]a ‘The displacement of Nickel and Titanium lines in the sun and arc’, KOB 53, 191–203.

    Google Scholar 

  220. Royds, Thomas [1917]b ‘The cause of the so-called pole effect in the electric arc’, KOB 54, 194–196; c) AP. J. 45, 112–117 (see also Gale [1917]).

    Google Scholar 

  221. Royds, Thomas [1923] ‘The effect on wave-length in arc spectra of introducing various substances into the arc’, KOB 73, 53–61.

    Google Scholar 

  222. S[ain]t. John, Charles Edward [1910]a ‘The absolute wave-lengths of the H and K lines of calcium in some terrestial sources’, AP. J. 31, 143–156.

    Google Scholar 

  223. St. John, C. E., & Babcock, H. D. [1914] ‘A displacement of arc lines not due to pressure’, Phys. Rev. (2) 3, 487–488.

    Article  Google Scholar 

  224. St. John, C. E., & Babcock, H. D. [1915]a ‘A study of the pole effect in the iron arc’, AP. J. 42, 231–262; b) ditto, C.Mt.W. no. 106, 1–32.

    Article  Google Scholar 

  225. St. John, C. E., & Babcock, H. D. [1915]c ‘Variability of spectrum lines in the iron arc’, PNAS 1, 131–136.

    Google Scholar 

  226. St. John, C. E., & Babcock, H. D. [1917] ‘The elimination of the pole-effect from the source for secondary standards of wave-length’, AP. J. 46, 138–166 (=C.Mt.W. no. 137; see also commentary by von Laue & Pringsheim [1922]).

    Article  Google Scholar 

  227. St. John, C. E., & Babcock, H. D. [1920] ‘Concerning tables of solar wavelengths in the international system’, PASP 32, 192.

    Article  Google Scholar 

  228. St. John, C. E., & Babcock, H. D. [1921] ‘Wave-lengths of lines in the iron arc from grating and interferometer measures λ 3370–λ 6750’, AP. J. 53, 260–299 (=C.Mt.W. no. 202).

    Google Scholar 

  229. St. John, C. E., Moore, C. E., Ware, L. W., Adams, E. F. & Babcock, H. D. [1928] Revision of Rowland's Tables of Solar Spectrum Wave Lengths with an Extension to the Present Limit of the Infra-Red, Washington, Publ. of the Carnegie Institute, No. 396.

    Google Scholar 

  230. St. John, C. E., & Ware, Louise W. [1912/14] ‘Tertiary standards with the plane grating; the testing and selection of standards’, a) ‘First paper’, AP. J. 36, 14–53 (=C.Mt.W. no. 61); b) ‘Second Paper’, AP. J. 39, 5–28 (=C.Mt.W., no. 75).

    Article  Google Scholar 

  231. St. John, C. E., & Ware, Louise W. [1913] ‘Standards of wave-lengths and desirable data for them and for other lines’, Phys. Rev. (2) 1, 67 (title only; cf. parts of the text in St. John & Ware [1912/14]b 10–11).

    Google Scholar 

  232. Sears, J. E. [1936] ‘Our basic standards of measurement’, Science in Progress 31, 209–235.

    Google Scholar 

  233. Schellen, Heinrich [1870/72] Die Spectralanalyse in ihrer Anwendung auf die Stoffe der Erde und die Natur der Himmelskörper, Braunschweig, Westermann, a) 1st ed. 1870; b) 2nd ed. 1871; c) 3rd ed. 1883; d) in Engl. transl. by J. &. C. Lasell: Spectrum Analysis in its Applications to Terrestrial Substances, and the Physical Constitution of the Heavenly Bodies, (London: Longman & Co., 1872).

    Google Scholar 

  234. Schippers, Heinrich [1912] Messungen am Antimonspektrum, a) PhD thesis, Univ. Bonn (Advisor: Kayser), b) short version in ZwPh 11, 235–253.

  235. Schmitz, Karl [1912] Messungen im Bariumspektrum, a) PhD thesis, Univ. Bonn (Advisor: Kayser), b) extract in ZwPh 11, 209–235.

  236. Schumacher, H. [1919] ‘Messungen im Bogenspektrum des Eisens nach dem internationalen System unterhalb von λ 2373’, ZwPh 19. 149–158.

    Google Scholar 

  237. Schuster, Arthur [1897] ‘On the constitution of the electric spark’, Nature 57, 17.

    Google Scholar 

  238. Seeliger, Rudolf [1927] Einführung in die Physik der Gasentladungen, (Leipzig: Barth, 1927).

    Google Scholar 

  239. Seeliger, Rudolf [1929]a ‘Allgemeine Eigenschaften der selbständigen Entladungen’, Handbuch der Experimentalphysik, Leipzig, Vol. 13, part 3, 1–92.

    Google Scholar 

  240. Seeliger, Rudolf [1929]b ‘Die Bogenentladung’, ibid., Leipzig, Vol. 13, 585–749 (see also Mierdel [1932]).

    Google Scholar 

  241. Simon, Hermann Theodor [1911] Der elektrische Lichtbogen, (Leipzig: Hirzel, 1911).

    Google Scholar 

  242. Sommerfeld, Arnold (Johannes Wilhelm) [1921] ‘Über den Stark-Effekt zweiter Ordnung’, Ann. Phys. (4) 65, 36–40.

    Google Scholar 

  243. Stahl, Willy [1911] Untersuchungen über die Spektren des Argons, a) PhD thesis, Univ. Bonn (Advisor: Kayser), b) extract in ZwPh 9, 302–312.

  244. Stanley, F. [1911] Lines in the Arc Spectra of Elements, (London: Hilger, 1911).

    Google Scholar 

  245. Stanley, R. W. & Dieke, G. H. [1955] ‘Interferometric wave-length of iron from a hollow cathode discharge’, JOSA 45, 280–286.

    Google Scholar 

  246. Stark, Johannes [1903] ‘Zur Kenntnis des Lichtbogens’, Ann. Phys. (4) 12, 673–713.

    Google Scholar 

  247. Stark, Johannes [1906] ‘Optische Effekte der Translation von Materie durch den Äther’, Phy. Z. 7, 353–355.

    Google Scholar 

  248. Stark, Johannes [1913]a ‘Observation of the separation of spectral lines by an electric field’, Nature 92, 401 and in German version: ‘Beobachtung der Zerlegung durch ein elektrisches Feld’, Natw. 1, 1182.

    Google Scholar 

  249. Stark, Johannes [1913]b ‘Beobachtungen über den Effekt des elektrischen Feldes auf Spektrallinien’, SB. Berlin 47, 932–946.

    Google Scholar 

  250. Stark, Johannes [1914]a ‘Weitere Resultate über den Effekt des elektrischen Feldes auf Spektrallinien’, Natw. 2, 145–148.

    Google Scholar 

  251. Stark, Johannes [1914]b ‘Feinzerlegung von Wasserstoffinien durch das elektrische Feld’, Natw. 2, 542–543.

    Google Scholar 

  252. Stark, Johannes [1914]c Elektrische Spektralanalyse chemischer Atome, (Leipzig: Hirzel, 1914) (=Physik. Bibliothek, Vol. 1).

    Google Scholar 

  253. Stark, Johannes [1914/15] ‘Beobachtungen über den Effekt des elektrischen Feldes auf Spektralinien’, a) Ann. Phys. (4) 43; I: ‘Quereffekt’, 965–982; II (together with Georg Wendt): ‘Längseffekt’, ibid., 983–990, III and IV (together with Heinrich Kirschbaum): ‘Abhängigkeit von der Feldstärke; Linienarten, Verbreiterung’, ibid., 991–1016; 1017–1047; V and VI: ‘Feinzerlegung der Wasserstoffserie’, 48, 193–209, 210–235 (see also Stark & Hardtke [1919]); b) no. V also in GN, 1914, 427–444; c) reprinted in Hermann (Ed.) [1965].

  254. Stark, Johannes [1915] ‘Bericht über die Verbreiterung von Spektrallinien’, JRE 12, 349–440.

    Google Scholar 

  255. Stark, Johannes [1927] ‘Starkeffekt’, in HEP 21, chap. 3, 339–548.

    Google Scholar 

  256. Stark, Johannes [1941] ‘Folgerungen über Atom und Elektron aus dem Effekt des elektrischen Feldes auf Spektrallinien’, Phys. Z. 42, 162–166.

    Google Scholar 

  257. Stark, Johannes [1945/87] Erinnerungen eines deutschen Naturforschers, written 1945, edited by Andreas Kleinert, (Mannheim: Bionomica, 1987).

    Google Scholar 

  258. Stark, Johannes [1950] Erfahrungen und Theorien über Licht und Elektron, (Traunstein: Stifel, 1950).

    Google Scholar 

  259. Stark, J. & Cassuto, L. [1903] ‘Der Lichtbogen zwischen gekühlten Elektroden’, Phys. Z. 5, 264–269

    Google Scholar 

  260. Stark, J. & Hardtke, [1919] ‘Beobachtungen über den Effekt des elektrischen Feldes auf Spektrallinien. IX. Vergleich von Dupletserien’, Ann. Phys. (4) 58, 712–722.

    Google Scholar 

  261. Steinhausen, Jakob [1904] Über ‘enhanced lines’, a) PhD thesis, Univ. Bonn, 1904; b) extract in ZwPh 3 [1905], 45–58.

  262. Steubing, Walter [1928] ‘Starkeffekt’, in: Gehrcke, E. (Ed.): Handbuch der Physikalischen Optik, (Leipzig: Barth, 1927/28,Vol. 2, 683–736).

    Google Scholar 

  263. Stiles, Harold [1909] ‘A determination of wave-lengths (International System) for the arc and spark spectrum of mercury’, AP. J. 30, 48–61.

    Google Scholar 

  264. Stüting, Leander [1909] Untersuchungen über den roten Teil der Bogenspektren von Nickel, Kobalt und Chrom, a) PhD thesis, Univ. Bonn (Advisor: Kayser); b) extract in ZwPh 7, 73–87.

  265. Swaim, V. F. [1914] ‘On the pressure-shift of the lines of the zinc spectrum at low pressures’, AP. J. 40, 137–147.

    Article  Google Scholar 

  266. Symons, Erich [1913] Messungen nach I.A. am Bogenspektrum von Platin, a) PhD thesis, Univ. Bonn (Advisor: Kayser); (Leipzig: Barth, 1913); b) extract in ZwPh 12, 277–295.

    Google Scholar 

  267. Takamine, Toshio [1919] ‘The Stark-effect for metals’, AP. J. 50, 23–41 (=C.Mt.W. no. 169).

    Article  Google Scholar 

  268. Takamine, Toshio [1924] ‘The Stark effect on fundamental (Bergmann) series’, Nature 114, 433.

    Google Scholar 

  269. Takamine, Toshio & Kokubu, Noboru [1918]a ‘The effect of an electric field on the spectrum lines of calcium and magnesium’, MCSK 3, 173–181 and plates I–IV.

    Google Scholar 

  270. Takamine, Toshio & Kokubu, Noboru [1918]b ‘Further studies on the Stark effect in helium and hydrogen’, MCSK 3, 271–280 and in PTMPS 9, 394–404 and plate VII.

    Google Scholar 

  271. Takamine, Toshio & Kokubu, Noboru [1918]c ‘The Stark effect on the spectrum lines of argon’, MCSK 3, 281–286 as well as in PTMPS 9, 405–408 and plate VIII.

    Google Scholar 

  272. Thomson, Joseph John [1900] ‘The genesis of the ion in the discharge of electricity through gases’, Phil. Mag. (5) 50, 278–283.

    Google Scholar 

  273. Thomson, Joseph John [1903]a Conduction of Electricity through Gases, (Cambridge: CUP, 1st ed. 1903; b) 2nd ed. 1906; c) 3rd ed., edited by J. J. Thomson & G. P. Thomson, 1928–33 (2 vols.).

    Google Scholar 

  274. Viefhaus, Heinrich [1914] ‘Ein Beitrag zur Bestimmung tertiärer Normalen der Gegend λ 2987 bis 4118 in dem Bogenspektrum des Eisens’, ZwPh 13, 209–234, 245–264.

    Google Scholar 

  275. Wallerath, P. [1924] ‘Beitrag zur Erweiterung und Verbesserung des Systems sekundärer Wellenlängennormalen’, Ann. Phys. (4) 75, 37–74.

    Google Scholar 

  276. Weber, Anton Peter [1928] ‘Eine neue Methode höchster Genauigkeit zur interferometrischen Wellenlängenmessung und ihre erstmalige Anwendung zur Vorbestimmung der für den deutschen Anschluß des Meters an Lichtwellen vorgeschlagenen Kryptonlinien’, Phys. Z. 29, 233–239.

    Google Scholar 

  277. Wendt, Georg [1914] ‘Seriengesetze der Verbreiterung von Spektrallinien’, Ann. Phys. (4) 45, 1257–1264.

    Google Scholar 

  278. Werner, H. [1914] ‘Messung von Wellenlängennormalen im internationalen System für den roten Spektralbereich’, a) PhD thesis, Univ. Tübingen; b) short version in Ann. Phys. (4) 44, 289–296.

  279. Wheatstone, Charles [1835] ‘An account of some experiments to measure the velocity of electricity, and the duration of electric light’, Phil. Mag. 6, 61–62.

    Google Scholar 

  280. Whitney, Walter Tichnor [1916] ‘The pole-effect in a calcium arc’, AP. J. 44, 65–75.

    Article  Google Scholar 

  281. Wolf, K. Lothar [1927]a ‘Zur Frage der sekundären Wellenlängennormalen der optischen Spektren’, Natw. 15, 981–983.

    Google Scholar 

  282. Wolf, K. Lothar [1927]b ‘Über eine Glühkathoden-Vakuumentladung in Gasen und Metalldämpfen, besonders in Eisendampf und ihre spektroskopische Verwendbarkeit’, Z. Phys. 44, 170–189.

    Google Scholar 

  283. Wolfschmidt, Gudrun [1989] ‘Die Entwicklung der astronomischen Photometrie bis in die 20er Jahre’, Deutsches Museum, Wissenschaftliches Jahrbuch, 227–271.

  284. Wright, Helen [1966] a) Explorer of the Universe: A Biography of George Ellery Hale, New York: Dutton, 1966; b) reprinted New York: American Institute of Physics, 1994.

    Google Scholar 

  285. Yoshida, Usaburo [1918]a ‘Lithium spectrum in an electric field’, MCSK 3, 161–171 and plates I–II.

    Google Scholar 

  286. Yoshida, Usaburo [1918]b ‘Distribution of electric field in the Crookes,’ dark spaces, ibid. MCSK 3, 183–187.

    Google Scholar 

  287. Yoshida, Usaburo [1918]c ‘The spectrum lines of oxygen and of nitrogen in an intense electric field’, MCSK 3, 287–297.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Comunicated by J. North

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hentschel, K. An unwelcome discovery: The pole effect in the electric arc, a threat to early 20th century precision spectrometry. Arch. Hist. Exact Sci. 51, 199–271 (1997). https://doi.org/10.1007/BF00384117

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00384117

Keywords

Navigation