Skip to main content
Log in

Terminal versus segmental development in the Drosophila embryo: the role of the homeotic gene fork head

  • Published:
Roux's archives of developmental biology Aims and scope Submit manuscript

Summary

Mutations of the homeotic gene fork head (fkh) of Drosophila transform the non-segmented terminal regions of the embryonic ectoderm into segmental derivatives: Pre-oral head structures and the foregut are replaced by post-oral head structures which are occasionally associated with thoracic structures. Posterior tail structures including the hindgut and the Malpighian tubules are replaced by post-oral head structures associated with anterior tail structures. The fkh gene shows no maternal effect and is required only during embryogenesis. The phenotypes of double mutants indicate that fkh acts independently of other homeotic genes (ANT-C, BX-C, spalt) and caudal. In addition, the fkh domains are not expanded in Polycomb (Pc) group mutant embryos. Ectopic expression of the homeotic selector genes of the ANT-C and BX-C in Pc group mutant embryos causes segmental transformations in terminal regions of the embryo only in the absence of fkh gene activity. Thus, fkh is a region-specific homeotic rather than a selector gene, which promotes terminal as opposed to segmental development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akam M (1987) The molecular basis for metameric pattern in Drosophila embryo. Development 101:1–22

    Google Scholar 

  • Baker NE (1987) Molecular cloning of sequences from wingless, a segment polarity gene in Drosophila: the spatial distribution of a transcript in embryos. EMBO J 6:1765–1773

    Google Scholar 

  • Baumgartner S, Bopp D, Burri M, Noll M (1987) Structure of two genes at the gooseberry locus related to the paired gene and their spatial expression during Drosophila embryogenesis. Genes Dev 1:1247–1267

    Google Scholar 

  • Busson B, Gans M, Komitopoulou K, Masson M (1983) Genetic analysis of three dominant female sterile mutations on the X-chromosome of Drosophila melanogaster. Genetics 105:309–325

    Google Scholar 

  • Campos-Ortega JA, Hartenstein V (1985) The embryonic development of Drosophila melanogaster. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Casanova J, Sanchez-Herrero E, Morata G (1986) Identification and characterization of a parasegment specific regulatory element of the Abdominal-B gene of Drosophila. Cell 47:627–636

    Google Scholar 

  • Doe CQ, Hiromi Y, Gehring WJ, Goodman CS (1988) Expression and function of the segmentation gene fushi tarazu during Drosophila neurogenesis. Science 239:170–175

    Google Scholar 

  • DiNardo S, Kuner JM, Theis J, O'Farell PH (1985) Development of embryonic pattern in D. melanogaster as revealed by accumulation of the nuclear engrailed protein. Cell 43:59–69

    Google Scholar 

  • Frasch M, Hoey T, Rushlow C, Doyle H, Levine M (1987) Characterization and localization of the even-skipped protein of Drosophila. EMBO J 6:749–759

    Google Scholar 

  • Frohnhöfer HG, Nüsslein-Volhard C (1986) Organization of anterior pattern in the Drosophila embryo by the maternal gene bicoid. Nature 324:120–125

    Google Scholar 

  • Gaul U, Seifert E, Schuh R, Jäckle H (1987) Analysis of Krüppel protein distribution during early Drosophila development reveals posttranscriptional regulation. Cell 50:639–647

    Google Scholar 

  • Jürgens G (1985) A group of genes controlling the spatial expression of the bithorax complex in Drosophila. Nature 316:153–155

    Google Scholar 

  • Jürgens G (1987) Segmental organization of the tail region in the embryo of Drosophila melanogaster. A blastoderm fate map of the cuticle structures of the larval tail region. Wilhelm Roux's Arch 196:141–157

    Google Scholar 

  • Jürgens G (1988) Head and tail development of the Drosophila embryo involves spalt, a novel homeotic gene. EMBO J 7:189–196

    Google Scholar 

  • Jürgens G, Wieschaus E, Nüsslein-Volhard C, Kluding H (1984) Mutations affecting the pattern of the larval cuticle in Drosophila melanogaster. II. Zygotic loci on the third chromosome. Wilhelm Roux's Arch 193:283–295

    Google Scholar 

  • Jürgens G, Lehmann R, Schardin M, Nüsslein-Volhard C (1986) Segmental organization of the head in the embryo of Drosophila melanogaster. A blastoderm fate map of the cuticle structures of the larval head. Wilhelm Roux's Arch 195:359–377

    Google Scholar 

  • Kaufman TC (1983) The genetic regulation of segmentation in Drosophila melanogaster. In: Jeffrey WR, Raff RA (eds) Time, space and pattern in embryonic development. Alan R Liss, New York, pp 365–383

    Google Scholar 

  • Kongsuwan K, Dellavalle RP, Merriam JR (1986) Deficiency analysis of the tip of chromosome 3R in Drosophila melanogaster. Genetics 112:539–550

    Google Scholar 

  • Lewis EB (1978) A gene complex controlling segmentation in Drosophila. Nature 276:565–570

    Google Scholar 

  • Lindsley DL, Grell DH (1968) Genetic variations in Drosophila melanogaster. Carnegie Institution of Washington, Publ No 627

  • Lindsley DL, Sandler L, Baker BS, Carpenter ATC, Denell RE, Hall JC, Jacobs PA, Miklos GLG, Davis BK, Gethmann RC, Hardy RW, Hessler A, Miller SM, Nozawa H, Parry DM, Gould-Somero M (1972) Segmental aneuploidy and the genetic gross structure of the Drosophila genome. Genetics 71:157–184

    Google Scholar 

  • Lohs-Schardin M, Cremer C, Nüsslein-Volhard C (1979) A fate map for the larval epidermis of Drosophila melanogaster: localized cuticle defects following irradiation of the blastoderm with an ultraviolet laser beam. Dev Biol 73:239–255

    Google Scholar 

  • Macdonald PM, Struhl G (1986) A molecular gradient in early Drosophila embryos and its role in specifying the body pattern. Nature 324:537–545

    Google Scholar 

  • Martinez-Arias A, Lawrence PA (1985) Parasegments and compartments in the Drosophila embryo. Nature 313:639–642

    Google Scholar 

  • Merril VKL, Turner FR, Kaufman TC (1987) A genetic and developmental analysis of mutations in the Deformed locus in Drosophila melanogaster. Dev Biol 122:379–395

    Google Scholar 

  • Mlodzik M, Gehring WJ (1987) Hierarchy of the genetic interactions that specify the anteroposterior segmentation pattern of the Drosophila embryo as monitored by caudal protein expression. Development 101: 421–435

    Google Scholar 

  • Nüsslein-Volhard C (1977) A rapid method for screening eggs from single Drosophila females. Dros Inf Serv 52:166

    Google Scholar 

  • Nüsslein-Volhard C, Frohnhöfer HG, Lehmann R (1987) Determination of anteroposterior polarity in Drosophila. Science 238:1675–1681

    Google Scholar 

  • Regulski M, McGinnis N, Chadwick R, McGinnis W (1987) Developmental and molecular analysis of Deformed; a homeotic gene controlling Drosophila head development. EMBO J 6:767–777

    Google Scholar 

  • Sanchez-Herrero E, Vernos I, Marco R, Morata G (1985) Genetic organization of Drosophila bithorax complex. Nature 313:108–113

    Google Scholar 

  • Snodgrass RE (1935) Principles of insect morphology. McGraw-Hill, New York London

    Google Scholar 

  • Struhl G (1983) Role of the esc + gene product in ensuring the selective expression of segment-specific homeotic genes in Drosophila. J Embryol Exp Morphol 76:297–331

    Google Scholar 

  • Struhl G, Akam M (1985) Altered distributions of Ultrabithorax transcripts in extra sex combs mutant embryos of Drosophila. EMBO J 4:3259–3264

    Google Scholar 

  • Tiong S, Bone LM, Whittle JRS (1985) Recessive lethal mutations within the bithorax-complex in Drosophila. Mol Gen Genet 200:335–342

    Google Scholar 

  • Turner FR, Mahowald AR (1977) Scanning electron microscopy of Drosophila embryogenesis. II. Gastrulation and segmentation. Dev Biol 57:403–416

    Google Scholar 

  • Turner FR, Mahowald AR (1979) Scanning electron microscopy of Drosophila embryogenesis. III. Formation of the head and caudal segments. Dev Biol 68:96–109

    Google Scholar 

  • Wakimoto BT, Kaufman TC (1981) Analysis of larval segmentation in lethal genotypes associated with the Antennapedia gene complex in Drosophila melanogaster. Dev Biol 81:51–64

    Google Scholar 

  • Wakimoto BT, Turner FR, Kaufman TC (1984) Defects in embryogenesis in mutants associated with the Antennapedia gene complex in Drosophila melanogaster. Dev Biol 102:147–172

    Google Scholar 

  • Wedeen C, Harding K, Levine M (1986) Spatial regulation of Antennapedia and bithorax gene expression by the Polycomb locus in Drosophila. Cell 44:739–748

    Google Scholar 

  • Whittle JRS, Tiong SYK, Sunkel CE (1986) The effect of lethal mutations and deletions within the bithorax complex upon the identity of caudal metameres in the Drosophila embryo. J Embryol Exp Morphol 93:153–166

    Google Scholar 

  • Wieschaus E, Nüsslein-Volhard C (1986) Looking at embryos. In: Roberts DB (ed) Drosophila: a practical approach. IRL Press, Oxford Washington, pp 199–227

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Offprint requests to: Institut für Biologie II (Genetik), Universität Tübingen, Auf der Morgenstelle 28, D-7400 Tübingen, Federal Republic of Germany

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jürgens, G., Weigel, D. Terminal versus segmental development in the Drosophila embryo: the role of the homeotic gene fork head . Roux's Arch Dev Biol 197, 345–354 (1988). https://doi.org/10.1007/BF00375954

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00375954

Key words

Navigation