Skip to main content
Log in

The Colima volcanic complex, Mexico: Part II. Late-quaternary cinder cones

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Since the late Pleistocene, eleven cinder and lava cones have erupted on the floor of the southern Colima graben, NE and NW of the large, active, andesitic volcano Colima. Scoria and lava samples from nine of the cones form a completely transitional basic alkalic series including basanites (9), leucite-basanites (3), and minettes (15), the commonest variety of mica lamprophyre. These samples represent primitive, high temperature magmas with 47.6–50.3% SiO2, 7.4–15.3% MgO, 2.5–4.4% K2O, and 2.2–9.9% normative nepheline. All members of this basic alkalic suite contain Mg-olivine (Fo75–94), chromite, augite, and late plagioclase and titanomagnetite. The petrographic transition from basanite to minette is marked by the appearance of sanidine and the volatile-bearing phases phlogopite, apatite, and analcime during late stages of crystallization. As these phases increase in abundance, presumably reflecting a rise in magmatic volatile content, there are corresponding increases in the whole rock concentrations of 16 incompatible elements. Although these incompatible elements are relatively abundant even in the basanites, many are highly concentrated in the minettes: Ba≦ 4,200 ppm, Sr≦3,100 ppm, Zr≦ 550 ppm, Ce≦190 ppm, Hf ≦18 ppm. Among the incompatible elements, the degrees of enrichment in the minettes relative to the basanites decrease in the order: H, Th, Ce, La, Nd, Zr, Hf, U, Ba, Sm, Eu, Pb, P, Nb, Sr, Ti. These enrichments may reflect the increasing importance of minor, incompatible element rich mantle phases during partial melting. The concentrations of alkali metals K, Na, Rb, and Cs do not correlate with these other elemental enrichments. The leucite-basanties have similar incompatible element contents to many minettes, differing from them only in the presence of leucite rather than analcime, and Ti-F-rich groundmass phlogopite rather than hydrous phlogopite phenocrysts; thus the leucite-basanites represent relatively dry equivalents of minettes.

Two of the eleven cinder cones are calc-alkaline in nature and do not belong to the basanite-minette group; the easternmost cone is constructed of high-Al basalt, and the northernmost of basaltic andesite. The high-Al basalt (49.5% SiO2, 9.3% MgO, 221 ppm Ni) closely approximates a parental magma to the post-caldera andesitic suite of V. Colima (56.5–61.6% SiO2). The basaltic-andesite is relatively enriched in incompatible elements compared to the high-Al basalt — V. Colima trend.

The ne-normative basanite-minette samples are highly enriched in incompatible elements, while the contemporaneous hy — qz-normative calc-alkaline suite, encompassing the high-Al basalt and V. Colima's andesites, is characterized by relatively low abundances of these elements. No likely mineral assemblage can relate the alkaline and calc-alkaline suites through crystal fractionation; they probably represent fundamentally different melting events.

During the Quaternary, the main focus of andesitic volcanism in the southern Colima graben has migrated southward with time. Volcán Colima marks its present position, 5 km south of the Pleistocene volcano Nevado de Colima, and another 15 km from the still older Volcán Cantaro. The eruptions of basic alkalic magma probably occurred during the late stages of Nevado's life and through the life of V. Colima. They generally migrated from west to east with time, towards V. Cantaro. The most recent cone, V. Apaxtepec, is the only one east of the andesitic Colima-Cantaro axis. The oldest and the two youngest cones produced basanites, while minettes dominated at cones of intermediate ages. The cinder cone eruptions may have coincided with a phase of lamprophyre dike injection into plutons solidifying beneath the extinct volcanoes north of V. Colima. The southern end of the Colima graben can be viewed, then, as the volcanic analog of many classical, post-plutonic, hypabyssal lamprophyre localities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Arculus RJ (1973) The alkali basalt, andesite association of Grenada, Lesser Antilles. Univ Durham, Durham England, Ph D thesis

    Google Scholar 

  • Arculus RJ (1974) Solid solution characteristics of spinels: Pleonastechromite-magnetite compositions in some island arc basalts. Carnegie Inst Washington YearB 73:322–327

    Google Scholar 

  • Arculus RJ (1976) Geology and geochemistry of the alkali basalt-andesite association of Grenada, Lesser Antilles island arc. Geol Soc Am Bull 87:612–624

    Google Scholar 

  • Arculus RJ (1978) Mineralogy and petrology of Grenada, Lesser Antilles arc. Contrib Mineral Petrol 65:413–424

    Google Scholar 

  • Arreola JM (1935) Nombres indigenas de lugares del estado de Jalisco estudio etimologico. Boletin de la junta auxiliar jalisceiense de la sociedad Mexicana de geografia y estadistica

  • Atwater T (1970) Implications of plate tectonics for the Cenozoic evolution of western N America. Geol Soc Am Bull 81:3513–3536

    Google Scholar 

  • Bachinski SW, Scott RB (1979) Rare-earth and other trace element contents and the origin of minettes (mica-lamprophyres). Geochim Cosmochim Acta 43:93–100

    Google Scholar 

  • Bailey DK (1964) Crustal warping-a possible tectonic control of alkaline magmatism. J Geophys Res 69:1103

    Google Scholar 

  • Bailey DK (1974) Continental rifting and alkaline magmatism. In: H Sorenson (ed) The Alkaline Rocks. J Wiley and Sons, New York, pp 148–159

    Google Scholar 

  • Bailey RA, Dalrymple GB, Lanphere MA (1976) Volcanism, structure, and geochronology of Long Valley caldera, Mono County, California. J Geophys Res 81:725–744

    Google Scholar 

  • Baker PE, Gass IG, Harris PG, Le Maitre RW (1964) The volcanological report of the Royal Society expedition to Tristan da Cunha. Philos Trans R Soc London, Ser A, 256:439–578

    Google Scholar 

  • Beswick AE, Carmichael ISE (1978) Contraints on mantle source compositions imposed by phosphorus and the rare-earth elements. Contrib Mineral Petrol 67:317–330

    Google Scholar 

  • Bloomfield K (1975) A late-Quaternary mono-genetic volcano field in central Mexico. Geol Rundsch 64:476–497

    Google Scholar 

  • Boettcher AL, O'Neil JR (1980) Stable isotope, chemical, and petrographic studies of high-pressure amphiboles and micas: evidence for metasomatism in the mantle source regions of alkali basalts and kimberlites. Am J Sci 280A:594–621

    Google Scholar 

  • Boettcher AL, Wyllie PJ (1969) Phase relationships in the system NaAlSiO4-SiO2-H2O to 35 kilobars pressure. Am J Sci 267:875–909

    Google Scholar 

  • Brown FH, Carmichael ISE (1969) Quaternary volcanoes of the Lake Rudolf region: 1. The basanite-tephrite series of the Korath range. Lithos 2:239–260

    Google Scholar 

  • Brown GM, Holland JG, Sigurdsson H, Tomblin JF, Arculus RJ (1977) Geochemistry of the Lesser Antilles volcanic island arc. Geochim Cosmochim Acta 41:785–801

    Google Scholar 

  • Brown GM, Peckett A (1977) Fluorapatites from the Skaergaard intrusion, East Greenland. Mineral Mag 41:227–232

    Google Scholar 

  • Cantagrel JM, Robin C (1978) Géochimie isotopique du strontium dans quelques séries types du volcanisme de L'Est mexicain. Géol Soc France Bull 7:935–939

    Google Scholar 

  • Cantagrel JM, Robin C (1979) K-Ar dating on eastern Mexican volcanic rocks — Relations between the andesitic and alkaline provinces. J Volcanol Geotherm Res 5:99–114

    Google Scholar 

  • Carmichael ISE (1967a) The iron-titanium oxides of salic volcanic rocks and their associated ferromagnesian silicates. Contrib Mineral Petrol 14:36–64

    Google Scholar 

  • Carmichael ISE (1967b) The mineralogy and petrology of the volcanic rocks from the Leucite Hills, Wyoming. Contrib Mineral Petrol 15:24–66

    Google Scholar 

  • Carmichael ISE, Nicholls J (1967) Iron-titanium oxides and oxygen fugacities in volcanic rocks. J Geophys Res 72(18):4665–4687

    Google Scholar 

  • Carmichael ISE, Turner FJ, Verhoogen J (1974) Igneous Petrology. McGraw-Hill, New York

    Google Scholar 

  • Cawthorn RG, Curran EB, Arculus RJ (1973) A petrogenetic model for the origin of the calc-alkaline suite of Grenada, Lesser Antilles. J Petrol 14:327–338

    Google Scholar 

  • Christiansen RL, Lipman PW, Carr WJ, Byers FM Jr, Orkild PP, Sargent KA (1977) Timber Mountain-Oasis Valley caldera complex of southern Nevada. Geol Soc Am Bull 88:943–959

    Google Scholar 

  • Comin-Chiaramonti P, Meriani S, Mosca R, Sinigoi S (1979) On the occurrence of analcime in the northeastern Qzerbaijan volcanics (northwestern Iran). Lithos 12:187–198

    Google Scholar 

  • Cundari A, Graziani G (1964) Prodotti di alterazione della leucite nelle vulcaniti vicane. Periodico Mineral (Rome) 33:35–43

    Google Scholar 

  • Deer WA, Howie RA, Zussman J (1971) An introduction to the rock-forming minerals. John Wiley and sons, New York

    Google Scholar 

  • DeLong SE, Hodges FN, Arculus RJ (1975) Ultramafic and mafic inclusions, Kanaga island, Alaska, and the occurrence of alkaline rocks in island arcs. J Geol 83:721–736

    Google Scholar 

  • Demant A (1978) Caracteristicas del eje neovolcanico transmexicano y sus problemas de interpretacion. Univ Nal Autón México, Inst Geol Revista 2 (2): 172–187

    Google Scholar 

  • Demant A (1979) Vulcanologia y petrographia del sector occidental del eje neovolcanico. Univ Nal Autón México. Inst Geol Revista 3 (1):39–57

    Google Scholar 

  • Diáz EC, Mooser F (1972) Formacion del graben Chapala. Soc Geol Mexicana, Memoria II Convencion Nacional, pp 144–145

  • Duffield WA, Bacon CR, Dalrymple GB (1980) Late Cenozoic volcanism, geochronology, and structure of the Coso Range, Inyo County, California. J Geophys Res 85:B5, 2381–2404

    Google Scholar 

  • Ehrenberg SN (1978) Petrology of potassic volcanic rocks and ultramafic xenoliths from the Navajo volcanic field, New Mexico and Arizona. Univ California, Los Angeles, Ph D dissert, 259 p

    Google Scholar 

  • Eichelberger JC, Gooley R (1977) Evolution of silicic magma chambers and their relationship to basaltic volcanism. Am Geophys Union Monograph Series 20

  • Engi M, Evans BW (1980) A re-evaluation of the olivine-spinel geothermometer: Discussion. Contrib Mineral Petrol 73:201–203

    Google Scholar 

  • Engel AEJ, Engel CG, Havens RG (1965) Chemical characteristics of oceanic basalts and the upper mantle. Geol Soc Am Bull 76:719–734

    Google Scholar 

  • Evans BW, Wright TL (1972) Composition of liquidus chromite from the 1959 (Kilauea Iki) and 1965 (Makaopuhi) eruptions of Kilauea volcano, Hawaii. Am Mineral 57:217–230

    Google Scholar 

  • Farrington OC (1897) Observations on Popocatepetl and Ixtaccihuatl. Field Columbian Museum (Chicago) Geol Series Publ 18, 1, No 2:76–120

    Google Scholar 

  • Foden JD, Varne R (1980) The petrology and tectonic setting of Quaternary-Recent volcanic centers of Lombok and Sumbawa, Sunda Arc. Chem Geol 30:201–226

    Google Scholar 

  • Francis DM (1976) The origin of amphibole in lherzolite xenoliths from Nunivak Island, Alaska. J Petrol 17 (3):357–378

    Google Scholar 

  • Frey FA, Green DH, Roy SD (1978) Integrated models of basalt petrogenesis: A study of quartz tholeiites to olivine melilitites from South Eastern Australia utilizing geochemical and experimental petrological data. J Petrol 19 (3):463–513

    Google Scholar 

  • Friedlaender I, Sonder RA (1923) Über das Vulkangebiet von San Martin Tuxtla in Mexiko. Zeitschr Vulk 7:162–187

    Google Scholar 

  • Garfunkel Z (1973) History of the San Andreas Fault as a plate boundary. Geol Soc Am Bull 84:2035–2042

    Google Scholar 

  • Gast PW (1968) Trace element fractionation and the origin of tholeiitic and alkaline magma types. Geochim Cosmochim Acta 32:1057–1086

    Google Scholar 

  • Gastil RG, Jensky W (1973) Evidence for strike-slip displacement beneath the Trans-Mexican Volcanic Belt. Stanford Univ Publ in Geol Sci 12–13:171–180

    Google Scholar 

  • Green DH (1971) Compositions of basaltic magmas as indicators of conditions of origin: applications to oceanic volcanism. Philos Trans R Soc London 268:707–725

    Google Scholar 

  • Green DH, Ringwood AE (1967) The genesis of basaltic magmas. Contrib Mineral Petrol 15:103–190

    Google Scholar 

  • Green NL (1980) Spatial coexistence of two distinct magmatic associations, SW British Columbia: Implications for subduction zone magma genesis. Geol Soc Am Abstr Prog 12:7, 437

    Google Scholar 

  • Gupta AK, Fyfe WS (1975) Leucite survival: The alteration to analcime. Canadian Mineral 13:361–363

    Google Scholar 

  • Hansen K (1980) Lamprophyres and carbonatitic lamprophyres related to rifting in the Labrador Sea. Lithos 13:145–152

    Google Scholar 

  • Hatch FH, Wells AK, Wells MK (1972) Petrology of the igneous rocks. Thomas Murby and Co, London

    Google Scholar 

  • Hawkesworth CJ, O'Nions RK, Arculus RJ (1979) Nd and Sr isotope geochemistry of island arc volcanics, Grenada, Lesser Antilles. Earth Planet Sci Lett 45:237–248

    Google Scholar 

  • Hildreth W (1979) The Bishop Tuff: Evidence for the origin of compositional zonation in silicic magma chambers. Geol Soc Am, Spec Pap 180:43–75

    Google Scholar 

  • Huppert HE, Sparks RSJ (1980) Restrictions on the compositions of mid-ocean ridge basalts: a fluid dynamical investigation. Nature 286 (3):46–48

    Google Scholar 

  • Hyndman DW (1972) Petrology of igneous and metamorphic rocks. McGraw-Hill, New York

    Google Scholar 

  • Irvine TN (1965) Chromian spinel as a petrogenetic indicator: Part 1. Theory. Can J Earth Sci 2:648–672

    Google Scholar 

  • Irvine TN (1967) Chromian spinel as a petrogenetic indicator: Part 2. Petrologic applications. Can J Earth Sci 4:71–103

    Google Scholar 

  • Jackson ED (1969) Chemical variation in coexisting chromite and olivine in the chromitite zones of the Stillwater complex. Econ Geol Mon 4:41–71

    Google Scholar 

  • Jahn BM (1973) A petrogenetic model for the igneous complex in the Spanish Peaks region, Colorado. Contrib Mineral Petrol 41:241–258

    Google Scholar 

  • Jahn BM, Sun SS, Nesbitt RW (1979) REE distribution and petrogenesis of the Spanish Peaks igenous complex, Colorado. Contrib Mineral Petrol 70:281–298

    Google Scholar 

  • Johnson RB (1968) Geology of the igneous rocks of the Spanish Peaks region, Colorado. US Geol Surv Prof Pap 594-G

  • Johnson RW, Wallace DA, Ellis DJ (1976) Feldspathoid-bearing, potassic rocks and associated types from volcanic islands off the coast of New Ireland, Papua New Guinea: A preliminary account of geology and petrology. In: RW Johnson (ed), Volcanim in Australasia, Elsevier, Amsterdam, pp 297–316

    Google Scholar 

  • Kay RW, Gast PW (1973) The rare earth content and origin of alkalirich basalts. J Geol 81 (6):653–682

    Google Scholar 

  • Karig DE, Cardwell RK, Moore GF, Moore DG (1978) Late Cenozoic subduction and continental margin truncation along the northern Middle America Trench. Geol Soc Am Bull 89:265–279

    Google Scholar 

  • Kastens KA, MacDonald KC, Becker K (1979) The Tamayo transform fault in the mouth of the Gulf of California. Marine Geophys Res 4:129–151

    Google Scholar 

  • Kelleher J, Sykes L, Oliver J (1973) Possible criteria for predicting earthquake locations and their application to major plate boundaries of the Pacific and Caribbean. J Geophys Res 78:2547–2585

    Google Scholar 

  • Kim KT, Burley BJ (1971) Phase equilibria in the system NaAlSi3O8-NaAlSiO4-H2O with special emphasis on the stability of analcite. Can J Earth Sci 8:311–337

    Google Scholar 

  • Knopf A (1936) Igneous geology of the Spanish Peaks region, Colorado. Geol Soc Am Bull 47:1727–1784

    Google Scholar 

  • Kuno H (1960) High-alumina basalt. J Petrol 1 (Pt. 2):121–145

    Google Scholar 

  • Kuno H (1968) Differentiation of basaltic magmas. In: HH Hess and A Poldervaart (eds) Basalts, Vol 2, pp 623–688, Interscience, New York

    Google Scholar 

  • Kyser TK (1980) Stable and rare gas isotopes and the genesis of basic lavas and mantle xenoliths. University of California, Berkeley, Ph D dissert, 188 p

    Google Scholar 

  • Larson RL, Menard HW, Smith SM (1968) Gulf of California: A result of ocean-floor spreading and transform faulting. Science 161:781–783

    Google Scholar 

  • Le Maitre RW (1962) Petrology of volcanic rocks, Gough Island, South Atlantic. Geol Soc Am Bull 73:1309–1340

    Google Scholar 

  • Lloyd FE, Bailey DK (1975) Light element metasomatism of the continental mantle: The evidence and the consequences. Phys Chem Earth 9:389–416

    Google Scholar 

  • Lofgren GE, Donaldson CH, Williams RJ, Mullins O, Usselman TM (1974) Experimentally reproduced textures and mineral chemistry of Appolo 15 quartz normative basalts. Proc Lunar Sci Conf 5:549–568

    Google Scholar 

  • Lopez-Escobar L, Frey FA, Vergara M (1977) Andesites and high-alumina basalts from the central-south Chile high Andes: Geo-chemical evidence bearing on their petrogenesis. Contrib Mineral Petrol 63:199–228

    Google Scholar 

  • Lorenzo JL (1961) Notas sobre geologia glacial del Nevado de Colima. Boletin del Instituto de Geologia, Univ Nal Auton Mexico 61:77–92

    Google Scholar 

  • Ludington S (1978) The biotite-apatite geothermometer revisited. Am Mineral 63:551–553

    Google Scholar 

  • Luhr JF (1978) Factors controlling the evolution of the prehistoric, pyroclastic eruption of Volcán San Juan, Mexico. Geol Soc Am Abstr Prog 10:3

    Google Scholar 

  • Luhr JF, Carmichael ISE (1980) The Colima volcanic complex, Mexico: Part I. Post-caldera andesites from Volcán Colima. Contrib Mineral Petrol 71:343–372

    Google Scholar 

  • Luhr JF, Nelson SA (1980) Volcanological and geochemical contrasts between two Mexican volcanoes: Colima and Ceboruco. EOS, Trans Am Geophys Union 61 (6):69

    Google Scholar 

  • Macdonald GA, Katsura T (1964) Chemical composition of Hawaiian lavas. J Petrol 5:82–133

    Google Scholar 

  • MacDonald R (1974) Tectonic settings and magma associations. Bull Volc 38:575–593

    Google Scholar 

  • Mahood GA (1980) Geological evolution of a Pleistocene rhyolitic center — Sierra la Primavera, Jalisco, Mexico. J Volcanol Geotherm Res 8:199–230

    Google Scholar 

  • Mammerickx J (1980) Neogene reorganization of spreading between the Tamayo and the Rivera Fracture Zone. Marine Geophys Res 4:305–318

    Google Scholar 

  • Masuda A, Nakamura N, Tanaka T (1973) Fine structures of mutually normlized rare-earth patterns of chondrites. Geochim Comochim Acta 37:239

    Google Scholar 

  • McBirney AR (1980) Mixing and unmixing of magmas. J Volcanol Geotherm Res 7:357–371

    Google Scholar 

  • Menzies M, Murthy VR (1980) Mantle metasomatism as a precursor to the genesis of alkaline magmas-isotopic evidence. Am J Sci 280A: 622–638

    Google Scholar 

  • Miyashiro A (1978) Nature of alkalic volcanic rock series. Contrib Mineral Petrol 66:91–104

    Google Scholar 

  • Morse SA (1968) Syenite. Carnegie Inst Washington Yearb 68:112–120

    Google Scholar 

  • Nelson SA (1980) Geology and petrology of Volcán Ceboruco, Nayarit, Mexico. Geol Soc Am Bull II, 91:2290–2431

    Google Scholar 

  • Nicholls JW (1969) Studies of the volcanic petrology of the Navajo-Hopi area Arizona. University of California, Berkeley, Ph D dissert, 107 p

    Google Scholar 

  • O'Hara MJ (1968) The bearing of phase equilibria studies in synthetic and natural systems and the origin and evolution of basic and ultrabasic rocks. Earth Sci Rev 4:69–133

    Google Scholar 

  • O'Hara MJ (1977) Geochemical evolution during fractional crystallization of a periodically refilled magma chamber. Nature 266 (7):503–507

    Google Scholar 

  • Ordóñez E (1910) Le Pic de Tancitaro, Michoacán. Soc cient Antonio Alzate Mem 30:11–17

    Google Scholar 

  • Pearce TH (1970) The analcite-bearing volcanic rocks of the Crowsnest Formation, Alberta. Can J Earth Sci 7, 46–66

    Google Scholar 

  • Perlman I, Asaro F (1969) Pottery analysis by neutron activation. Archaeometry 11:21–52

    Google Scholar 

  • Peters Tj, Luth WC, Tuttle OF (1966) The melting of analcite solid solutions in the system NaAlSiO4-NaAlSi3O8-H2O. Am Mineral 51:736–753

    Google Scholar 

  • Reyes A, Brune JN, Lomnitz C (1979) Source mechanism and after-shock study of the Colima, Mexico earthquake of January 30, 1973. Seismol Soc Am Bull 69, no 6

  • Ridley WI (1977) The crystallization trends of spinels in Tertiary basalts from Rhum and Muck and their petrogenetic significance. Contrib Mineral Petrol 64:243–255

    Google Scholar 

  • Robin C (1976) Présence simultanée de magmatismes de significations tectoniques opposées dans l'Est due Mexique. Géol Soc France Bull XVIII:1637–1645

    Google Scholar 

  • Robin C, Nicolas E (1978) Particularités géochimiques des suites andésitiques de la zone oriental de l'axe transmexicain, dans leur contexte tectonique. Géol Soc France Bull XX: 193–202

    Google Scholar 

  • Robin C, Tournon J (1978) Spatial relations of andesitic and alkaline provinces in Mexico and Central America. Can J Earth Sci 15:1633–1641

    Google Scholar 

  • Rock NMS (1977) The nature and origin of lamprophyres: Some definitions, distinctions, and derivations. Earth Science Rev 13:123–169

    Google Scholar 

  • Roeder PL, Campbell IH, Jamieson HE (1979) A re-evaluation of the olivine-spinel geothermometer. Contrib Mineral Petrol 68:325–334

    Google Scholar 

  • Roeder PL, Campbell IH, Jamieson HE (1980) Comment on discussion by Engi and Evans. Contrib Mineral Petrol 73:205–206

    Google Scholar 

  • Rose WT Jr, Anderson AT Jr, Woodruff LG, Bonis SB (1978) The October 1974 basaltic tephra from Fuego Volcano: Description and history of the magma body. J Volcanol Geotherm Res 4:3–53

    Google Scholar 

  • Roux J, Hamilton DL (1976) Primary igneous analcite — An experimental study. J Petrol 17, Pt.2:244–257

    Google Scholar 

  • Sack RC, Carmichael ISE, Rivers ML, Ghiorso MS (1980) Ferric-ferrous equilibrium in natural silicate liquids at 1 bar. Contrib Mineral Petrol 75:369–376

    Google Scholar 

  • Sato H (1977) Nickel content of basaltic magmas: identification of primary magmas and a measure of the degree of olivine fractionation. Lithos 10:113–120

    Google Scholar 

  • Schairer JF, Yoder HS Jr (1960) The nature of residual liquids from crystallization, with data on the system nepheline-diopside-silica. Am J Sci 258A:273–283

    Google Scholar 

  • Schairer JF, Yoder HS Jr (1964) Crystal and liquid trends in simplified alkali basalts. Carnegie Inst Washington Yearb 63:65–74

    Google Scholar 

  • Scott DH, Trask NJ (1971) Geology of the Lunar Crater Volcanic Field, Nye County, Nevada. US Geol Surv Prof Paper 599–I

  • Shimuzu N, Arculus RJ (1975) Rare earth element concentrations in a suite of basanitoids and alkali olivine basalts from Grenada, Lesser Antilles. Contrib Mineral Petrol 50:231–240

    Google Scholar 

  • Sigurdsson H, Tomblin JF, Brown GM, Holland JG, Arculus RJ (1973) Strongly undersaturated magmas in the Lesser Antilles island arc. Earth Planet Sci Lett 18:285–295

    Google Scholar 

  • Smith RL (1979) Ash-flow magmatism. In: CE Chapin and WE Elston (eds) Ash-flow tuffs. Geol Soc Am Spec Pap 180:5–27

  • Sparks RSJ, Meyer P, Sigurdsson H (1980) Density variation amongst mid-ocean ridge basalts: implications for magma mixing and the scarcity of primitive lavas. Earth Planet Sci Lett 46:419–430

    Google Scholar 

  • Stolper E, Walker D (1980) Melt density and the average composition of basalt. Contrib Mineral Petrol 74:7–12

    Google Scholar 

  • Stormer JC Jr (1972) Ages and nature of volcanic activity on the southern high plains, New Mexico and Colorado. Geol Soc Am Bull 83:2443–2448

    Google Scholar 

  • Stormer JC (1978) Contemporaneous calc-alkaline and basanite-nephelinite suites on the east flank of the Rio Grande depression. Intern Symposium on the Rio Grande Rift, Santa Fe, NM, Prog Abstr:94–95

  • Stormer JC Jr, Carmichael ISE (1971) Fluorine-hydroxyl exchange in apatite and biotite: A potential igneous geothermometer. Contrib Mineral Petrol 31:121–131

    Google Scholar 

  • Sun SS, Hanson GN (1975) Origin of Ross Island basanitoids and limitations upon the heterogeneity of mantle sources for alkali basalts and nephelites. Contrib Mineral Petrol 52:77–106

    Google Scholar 

  • Thompson AB (1973) Analcime: Free energy from hydrothermal data. Implications for phase equilibria and thermodynamic quantities for phases in NaAlO2-SiO2-H2O. Am Mineral 58:277–286

    Google Scholar 

  • Thorpe RS (1977) Tectonic significance of alkaline volcanism in eastern Mexico. Tectonophysics 40:19–26

    Google Scholar 

  • Turner FJ, Verhoogen J (1951) Igneous and metamorphic petrology. McGraw-Hill, New York

    Google Scholar 

  • Turner FJ, Verhoogen J (1960) Igneous and metamorphic petrology, 2d ed McGraw-Hill, New York

    Google Scholar 

  • Varne R, Graham AL (1971) Rare earth abundances in hornblende and clinopyroxene of a hornblende lherzolite xenolith: Implications for upper mantle fractionation processes. Earth Planet Sci Lett 13:11–18

    Google Scholar 

  • Verhoogen J (1962) Oxidation of iron-titanium oxides in igneous rocks. J Geol 70:168–181

    Google Scholar 

  • Waitz P (1906) Le Volcan de Colima. 10th International Geological Congress, Field Trip Guide, chap. XIII, 27 p

  • Walker D, Powell MA, Lofgren GE, Hays JF (1978) Dynamic crystallization of a eucrite basalt. Proc Lunar Sci Conf 9th, pp 1369–1391

  • Walker HJ (1954) A study of rainfall in Mexico. University of California, Berkeley, MA dissert, 260 p

    Google Scholar 

  • Wass SY (1979) Multiple origins of clinopyroxenes in alkali basaltic rocks. Lithos 12:115–132

    Google Scholar 

  • Wass SY, Henderson P, Elliot CJ (1980) Chemical heterogeneity and metasomatism in the upper mantle: Evidence from rare earth and other elements in apatite rich xenoliths in basaltic rocks from eastern Australia. Philos Trans R Soc London A 297:333–346

    Google Scholar 

  • Wass SY, Rogers NW (1980) Mantle metasomatism — Precursor to continental alkaline volcanism. Geochim Cosmochim Acta 44:1811–1823

    Google Scholar 

  • Watson EB (1979) Apatite saturation in basic to intermediate magmas. Geophys Res Lett 6(12): 937–940

    Google Scholar 

  • Wilcox RE (1954) Petrology of Paricutin Volcano, Mexico. US Geol Surv Bull 965-C:281–349

    Google Scholar 

  • Wilkinson JFG (1962) Mineralogical, geochemical, and petrogenetic aspects of an analcite-basalt from the New England District of New South Wales. J Petrol 3 (2):192–214

    Google Scholar 

  • Wilkinson JFG (1965) Some feldspars, nephelines, and analcimes from the Square Top Intrusion, Nundle, NSW. J Petrol 6 (3):420–444

    Google Scholar 

  • Wilkinson JFG (1968) Analcimes from some potassic igneous rocks and aspects of analcime-rich igneous assemblages. Contrib Mineral Petrol 18:252–269

    Google Scholar 

  • Williams H (1936) Pliocene volcanoes of the Navajo-Hopi country. Geol Soc Am Bull 47:111–172

    Google Scholar 

  • Williams H (1950) Volcanoes of the Paricutin region. US Geol Surv Bull 965-D:165–275

    Google Scholar 

  • Williams H, Turner FJ, Gilbert CM (1955) Petrography. Freeman, San Francisco

    Google Scholar 

  • Wilshire HG, Trask NJ (1971) Structural and textural relationships of amphibole and phlogopite in peridotite inclusions, Dish Hill, California. Am Mineral 56:240–255

    Google Scholar 

  • Wilshire HG, Pike JEN, Meyer CE, Schwarzman EC (1980) Amphibole-rich veins in lherzolite xenoliths, Dish Hill and Deadman Lake, California. Am J Sci 280A:576–593

    Google Scholar 

  • Woolley AR, Symes RF (1976) The analcime-phyric phonolites (blairmorites) and associated analcime kenytes of the Lupata Gorge, Mocambique. Lithos 9:9–15

    Google Scholar 

  • Yoder HS Jr, Tilley CE (1962) Origin of basalt magmas: an experimental study of natural and synthetic rock systems. J Petrol 3:342–352

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luhr, J.F., Carmichael, I.S.E. The Colima volcanic complex, Mexico: Part II. Late-quaternary cinder cones. Contr. Mineral. and Petrol. 76, 127–147 (1981). https://doi.org/10.1007/BF00371954

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00371954

Keywords

Navigation