Find out how to access previewonly content
On the path and efficiency of two micromachines with rigid tails
 S. Nasseri,
 N. PhanThien
 … show all 2 hide
Rent the article at a discount
Rent now* Final gross prices may vary according to local VAT.
Get AccessAbstract
This paper reports on the results of investigation of the swimming of two different micromachines. Mechanically each of these micromachines consists of a head (containing an electromechanical power source) and a tail which moves relative to the head as a rigid body. The problem is approached theoretically by considering the types of movement which can occur for these micromachines immersed in a viscous medium. The first micromachine has a tail which oscillates in vertical plane, therefore the trajectory of this machine is in that plane too. The tail of the second micromachine roates conically, so it produces a three dimensional helical path in space with its axis approximately along the direction of tail centreline.
Using the boundary element method for solving the traction equations on the surface of the tail, and a timedependent Euler kinematic scheme to plot the path, the net propulsive force and torque, the translational velocity, angular velocity and the trajectory of each machine are calculated. Evaluation of the path and the direction of motion for each micromachine using different dimensional parameters can give an idea of the efficiency for such machines with rigid tails.
Communicated by S. N. Atluri, 30 January 1996
References
Banerjee, P. K.; Butterfield, R. 1981: Boundary Element Methods in Engineering Science. McGrawHill: 138–167
Bathe, K. J. 1982: Finite Element Procedures in Engineering Analysis. Prentice Hall: Englewood Cliffs, New Jersey.
Brebbia, C. A.; Telles, J. C. F.; Wrobel, L. C. 1984: Boundary Element Techniques: Theory and Application in Engineering. SpringerVerlag, Berlin: 177–236
Brennen, C.; Winet, H. 1977: Fluid Mechanics of propulsion by cilia and flagella. Ann. Rev. Fluid Mech. 9: 339–398
Bush, M. B.; Tanner, R. I. 1983: Numerical solution of viscous flows using integral equation methods. Int. J. Num. Meth. Fluids. 3: 71–92
Chwang, A. T.; Wu, T. Y. 1971: A note on the helical movement of microorganisms. Proc. R. Soc. Lond. B 178: 327–346
Fujita, H.; Omodaka, A. 1987: Electrostatic actuators for Micromechatronics, Proc. IEEE Micro Robots and Teleoperators Workshop
Gray, J.; Hancock, G. J. 1955: The propulsion of seaurchin spermatozoa. J. Exp. Biol. 32: 802–814
Hancock, G. J. 1953: The self propulsion of microscopic organisms through liquids. Proc. R. Soc. Lond. A 217: 96–121
Higdon, J. J. L. 1979: A Hydrodynamic analysis of flagellar propulsion. J. Fluid Mech. 90: 685–711
Ikuta, K.; Hirowatari, K. 1993: Real three dimensional micro fabrication using stereo lithography and metal molding, Proc. IEEE Micro Electro Mech. Sys., 42
Jones, M. S.; Le Baron, L.; Pedley, T. J. 1994: Biflagellate gyrotaxis in a shear flow. J. Fluid Mech. 281: 137–158
Kim, S.; Karrila, S. J. 1991: Microhydrodynamics: Principles and Selected Applications. ButterworthHeinemann, Boston
Kim, Y.; Katsurai, M.; Fujita, H. 1989: A proposal for a superconducting actuator using Meissner effect, Proc. IEEE Micro Electro Mechanical Systems Workshop, 107–112
Lighthill, M. J. 1976: Flagellar Hydrodynamics: the John Von Neumann Lecture 1975. SIAM Rev. 18: 161–229
Menz, W.; Bacher, W.; Harmening, M.; Michel, A. 1991: The LIGA technique—A novel concept for microstructures and combination with Sitechnologies by injection molding, Proc. IEEE Micro Electro Mech. Sys., 69
Myerscough, M. R.; Swan, M. A. 1989: A model for swimming unipolar spirilla. J. Theor. Biol. 139: 201–218
O'Connor, L. 1994: Micromachines tap actuating principles. J. Mech. Eng. Vol. 116, No. 8, 58–60
Okano, K. 1994: Micromachining of micromachine parts, Int. J. Japan Soc. Prec. Eng., Vol. 28 No. 3, 196–199
PhanThien, N.; TranCong, T.; Ramia, M. 1987: A boundary element analysis of flagellar propulsion. J. Fluid Mech. 184: 533–549
Ramia, M. 1991: Numerical model for the locomotion of spirilla. Biophys. J. 60: 1057–1078
Ramia, M. 1993: Mathematical Modeling of Microorganism Locomotion, Ph.D. thesis, Univ. of Sydney, Australia
Ramia, M.; PhanThien, N. 1988: The motion of slender bodies in a viscous fluid a boundary element approach. Proceeding of Tenth International Congress of Rheology, Sydney, 14–19 Aug. P.H.T. Uhlherr, editor. Australian Society of Rheology
Ramia, M.; Tullock, D. L. 1990: Microorganism locomotion: application of fluid mechanics and kinematics. Proceedings of the fifth National Congress on Rheology, Melbourne, 27–29 June. L. Yeow and P.H.T. Uhlherr, editors. Australian Society of Rheology, Department of Chemical Engineering, University of Melbourne, Parkville, Victoria, Australia, 95–98
Ramia, M.; Tullock, D. L.; PhanThien, N. 1993: The role of hydrodynamic interaction in the locomotion of microorganisms, Biophys. J. 65: 755–778
Shreiner, K. E. 1971: The helix as a propeller of microorganisms. J. Biomech. 4: 73–83
Sleigh, M. A. 1964: Flagellar movement of the sessile flagellates: Actinumonas, Codonosiga, Monas and Poteriodendron. Q. J. Microsc. Sci. 105: 405–414
Suzuki, K.; Shimoyama, I.; Miura, H.; Ezura, Y. 1992: Creation of an insectbased microrobot with an external skeleton and elastic joints. Proc. IEEE Micro Electro Mechanical Systems Workshop, 190–194
Tang, W. C.; Coung, T.; Nguyen, H.; Howe, R. T. 1989: Laterally driven polysilicon resonant microstructures, Proc. IEEE Micro Electro Mechanical Systems Workshop, 53–59
TranCong, T.; PhanThien, N. 1989: Stokes problems of multiparticle systems: a numerical method for arbitrary flows. Phys. Fluids A 1: 453–461
Trimmer, W.; Jebens, R. 1989: An operational harmonic electrostatic motor, Proc. IEEE Micro Electro Mechanical Systems Workshop, 13–16
Tullock, D. L. 1993: New Developments and Applications of the Boundary Element Method for Some Problems in Elasticity and Viscous Flow, Ph.D. thesis, Univ. of Sydney, Australia
Winet, H.; Jahn, T. L., 1972: On the origin of bioconvection fluid instabilities in Tetrahymena culture systems. Biorheol. 9: 87–94
Youngren, G. K.; Acrivos, A. 1975: Stokes flow past a particle of arbitrary shape: a numerical method of solution. J. Fluid Mech. 69: 377–403
 Title
 On the path and efficiency of two micromachines with rigid tails
 Journal

Computational Mechanics
Volume 18, Issue 3 , pp 192199
 Cover Date
 19960701
 DOI
 10.1007/BF00369937
 Print ISSN
 01787675
 Online ISSN
 14320924
 Publisher
 SpringerVerlag
 Additional Links
 Topics
 Industry Sectors
 Authors

 S. Nasseri ^{(1)}
 N. PhanThien ^{(1)}
 Author Affiliations

 1. Department of Mechanical and Mechatronic Engineering, The University of Sydney, 2006, N.S.W., Australia