Skip to main content
Log in

Accumulation of organelles at the ends of interrupted axons

  • Published:
Zeitschrift für Zellforschung und Mikroskopische Anatomie Aims and scope Submit manuscript

Summary

Proximal and distal stumps of the sciatic nerve of rats were examined with the light and electron microscope in the course of 48 hours following nerve crush. On both sides of the lesion organelles accumulate in axons beyond regions disorganized by injury. A stretch of clear axoplasm filled with fine granules usually separates the cone of accumulating particles from the damaged part of the fibre. From two hours onwards closely packed vesicles, tubules, mitochondria and other organelles form dense pellets which fill up the whole lumen of the fibre. Further away from the fibre tip organelles are stranded at the circumference only, whereas the central core is occupied by neurofilaments. In a number of fibres no pellets are observed and only a moderately increased network of axoplasmic reticulum is seen at the fibre ends.

Measurements on isolated fibres have shown that the length of the pellet increases with time on both sides of the lesion up to 18 hours after crush; thereafter the elongation is arrested in the distal stump, while in the proximal stump it continues further at a slower rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andres, K. H.: Elektronenmikroskopische Untersuchungen über Strukturveränderungen an den Nervenfasern in Rattenspinalganglien nach Bestrahlung mit 185 MEV-Protonen. Z. Zellforsch. 61, 1–22 (1963).

    Google Scholar 

  • Breemen, van V. L., E. Anderson, and J. F. Reger: An attempt to determine the origin of synaptic vesicles. Exp. Cell Res., Suppl. 5, 153–167 (1958).

    Google Scholar 

  • Calugareanu, D.: Contribution à l'étude de la compression des nerfs. J. Physiol. Pathol. gén. 3, 393–404 (1901).

    Google Scholar 

  • -: Recherches sur les modifications histologiques dans les nerfs comprimés. J. Physiol. Pathol. gén. 3, 413–423 (1901).

    Google Scholar 

  • Causey, G., and E. Palmer: Early changes in degenerating mammalian nerves. Proc. roy. Soc. B 139, 597–609 (1952).

    Google Scholar 

  • Dahlström, A.: Observation on the accumulation of noradrenaline in the proximal and distal parts of peripheral adrenergic nerves after compression. J. Anat. (Lond.) 99, 677–687 (1965).

    Google Scholar 

  • -: The transport of noradrenaline between two simultaneously performed ligations of the sciatic nerves of rat and cat. Acta physiol. scand. 69, 158–166 (1967).

    Google Scholar 

  • David, H., E. Winkelmann u. I. Marx: Elektronenmikroskopische Untersuchungen degenerativer und regenerativer Vorgänge am durchtrennten Rückenmark von Amblystoma mexicanum. J. Hirnforsch. 6, 235–255 (1963).

    Google Scholar 

  • Estable, C., W. Acosta-Ferreira, and J. R. Sotelo: An electron microscope study of the regenerating nerve fibres. Z. Zellforsch. 46, 387–399 (1957).

    Google Scholar 

  • Friede, R.: Electrophoretic production of “reactive” axon swellings in vitro and their histochemical properties. Acta neuropath. (Berl.) 3, 217–228 (1964).

    Google Scholar 

  • Gray, E. G., and R. W. Guillery: Synaptic morphology in the normal and degenerating nervous system. Int. Rev. Cytol. 19, 111–182 (1966).

    Google Scholar 

  • Haftek, J., and P. K. Thomas: Electron microscope observations on the effects of localized crush injuries on the connective tissues of peripheral nerve. J. Anat. (Lond.) 102, 154–156 (1967).

    Google Scholar 

  • Hay, E. D.: The fine structure of nerves in the epidermis of regenerating salamander limbs. Exp. Cell Res. 19, 299–317 (1960).

    Google Scholar 

  • Hebb, C. O., and A. Silver: Gradient of choline acetylase activity. Nature (Lond.) 189, 123–125 (1961).

    Google Scholar 

  • Holtzman, E., and A. B. Novikoff: Lysosomes in the rat sciatic nerve following crush. J. Cell Biol. 27, 651–669 (1965).

    Google Scholar 

  • Honjin, R., T. Nakamura, and M. Imura: Electron microscopy of peripheral nerve fibres. III. On the axoplasmic changes during Wallerian degeneration. Okajimas Folia anat. jap. 33, 131–156 (1959).

    Google Scholar 

  • Inuce, S.: Structural changes of nerve fibres in the early phases of limb regeneration in the adult newt with special references to fine structures of regenerating nerve fibres. Gunma J. med. Sci. 9, 302–328 (1960).

    Google Scholar 

  • Kapeller, K., and D. Mayor: The accumulation of noradrenaline in constricted sympathetic nerves as studied by fluorescence and electron microscopy. Proc. roy. Soc. B 167, 282–292 (1967).

    Google Scholar 

  • -: Accumulation of organelles distal to the site of constriction of post-ganglionic sympathetic nerves. J. Physiol. (Lond.) 194, 95–96P (1968).

    Google Scholar 

  • Kerkut, G. A., A. Shapira, and R. J. Walker: The transport of labelled material from CNS ⇋ muscle along a nerve trunk. Comp. Biochem. Physiol. 23, 729–748 (1967).

    Google Scholar 

  • Lampert, P., J. M. Blumberg, and A. Pentschew: An electron microscopic study of dystrophic axons in the gracile and cuneate nuclei of vitamin E-deficient rats. Axonal dystrophy in vitamin E deficiency. J. Neuropath. exp. Neurol. 23, 60–77 (1964).

    Google Scholar 

  • -, and M. Cressman: Axonal regeneration in the dorsal columns of the spinal cord of adult rats. An electron microscopic study. Lab. Invest. 13, 825–839 (1964).

    Google Scholar 

  • Lubińska, L.: Elasticity and distensibility of nerve tubes. Acta Biol. exp. (Warszawa) 16, 73–90 (1952).

    Google Scholar 

  • -: Outflow from cut ends of nerve fibres. Exp. Cell Res. 10, 40–47 (1956).

    Google Scholar 

  • -: Axoplasmic streaming in regenerating and in normal nerve fibres. In: Progress in brain research vol. 13, (ed. M. Singer and J. P. Schadé), p. 1–71. Amsterdam: Elsevier Publ. Co. 1964.

    Google Scholar 

  • -, S. Niemierko, B. Oderfeld, and L. Szwarc: Behaviour of acetylcholinesterase in isolated nerve segments. J. Neurochem. 11, 493–503 (1964).

    Google Scholar 

  • -, and J. Zelená: Bidirectional movements of axoplasm in peripheral nerve fibers. Acta Biol. exp. (Warszawa) 23, 239–247 (1963).

    Google Scholar 

  • Niemierko, S., and L. Lubińska: Two fractions of axonal acetylcholinesterase exhibiting different behaviour in severed nerves. J. Neurochem. 14, 761–769 (1967).

    Google Scholar 

  • Ohmi, S.: Electron microscopic study on Wallerian degeneration of the peripheral nerve. Z. Zellforsch. 54, 39–67 (1961).

    Google Scholar 

  • Reynolds, E. S.: The use of lead citrate at high pH as an electron opaque stain in electron microscopy. J. Cell Biol. 17, 208–212 (1963).

    Google Scholar 

  • Sabatini, D. D., K. Bensch, and R. J. Barrnett: Cytochemistry and electron microscopy. The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation. J. Cell Biol. 17, 19–58 (1963).

    Google Scholar 

  • Schlote, W.: Zur Abgrenzung reaktiver von regenerativen Vorgängen im Axoplasma zentraler Nervenfasern. Verh. Dtsch. Ges. Path., 50. Tagg Heidelberg 1966a, S. 277–280.

  • -: Der Aufbau von Schichtenkörpern im Axoplasma durchtrennter Opticusfasern distal der Läsion. J. Ultrastruct. Res. 16, 548–568 (1966b).

    Google Scholar 

  • Vial, J. D.: The early changes in the axoplasm during Wallerian degeneration. J. biophys. biochem. Cytol. 4, 551–556 (1958).

    Google Scholar 

  • Watson, W. E.: Centripetal passage of labelled molecules along mammalian motor axons. J. Physiol. (Lond.) 196, 122–123P (1968).

    Google Scholar 

  • Wechsler, W., u. H. Hager: Elektronenmikroskopische Befunde zur Feinstruktur von Axonveränderungen in regenerierenden Nervenfasern des Nervus ischiadicus der weißen Ratte. Acta neuropath. (Berl.) 1, 489–506 (1962).

    Google Scholar 

  • Weiss, P.: Neuronal dynamics. Neurosciences Res. Progr. Bull. 5, 371–400 (1967).

    Google Scholar 

  • -, and A. Pillai: Convection and fate of mitochondria in nerve fibers: axonal flow as vehicle. Proc. nat. Acad. Sci. (Wash.) 54, 48–56 (1965).

    Google Scholar 

  • -, A. C. Taylor, and A. Pillai: The nerve fiber as a system in continuous flow: microcinematographic and electronmicroscopic demonstrations. Science 136, 330 (1962).

    Google Scholar 

  • Wettstein, R., and J. R. Sotelo: Electron microscope study on the regenerative process of peripheral nerves of mice. Z. Zellforsch. 59, 708–730 (1963).

    Google Scholar 

  • Zelená, J.: Bidirectional movements of mitochondria along axons of an isolated nerve segment. Z. Zellforsch. (in press).

  • -, and E. Gutmann: Bidirectional shifting of mitochondria along axons. [In Czech.] Čs. Fysiol. 17, 39–40 (1968a).

    Google Scholar 

  • - - Accumulation of organelles in central and peripheral stumps of interrupted axons In: Metabolism of nucleic acids and proteins and the function of the neuron (ed. Z. Lodin), p. 140–152. Excerpta med. Monograph Series, Amsterdam 1968b.

  • -, and L. Lubińska: Early changes of acetylcholinesterase activity near the lesion in crushed nerves. Physiol. bohemoslov. 11, 261–268 (1962).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The authors wish to acknowledge gratefully the technical assistance of Mrs. M. Sobotková, Mr. M. Doubek, Mrs. J. Waryszewska and Mrs. B. Lwowska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zelená, J., Lubińska, L. & Gutmann, E. Accumulation of organelles at the ends of interrupted axons. Zeitschrift für Zellforschung 91, 200–219 (1968). https://doi.org/10.1007/BF00364311

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00364311

Keywords

Navigation