Skip to main content
Log in

Multiple copies of SUC4 regulatory regions may cause partial de-repression of invertase synthesis in Saccharomyces cerevisiae

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

Transformation to generate multiple copies of regulatory DNA sequences has been used to study the interactions between regulatory proteins and their target sequences, since a high copy number of these sequences may titrate trans-acting regulatory proteins. We have analyzed the synthesis of invertase in yeast strains carrying different SUC genes transformed with the multiple-copy plasmid pSH143, a derivative of pJDB207 containing the promoter and upstream regulatory sequences of SUC4. The results obtained seem to be strain dependent. Under repressing conditions a high copy number of SUC4 promoter regions may cause increased expression of the invertase genes resulting in the synthesis of external glycosylated protein. A similar result was obtained under de-repressing conditions since transformants from some strains showed higher levels of activity. These results suggest that transcriptional regulatory (negative) factors may become limiting when the copy number of their target DNA sequences is increased. This effect may depend on the amount of active repressor molecules as well as on their affinity for SUC4 upstream sequences. This is discussed on the basis of the nucleotide sequences of SUC promoters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baker SM, Okkema PG, Jaehning JA (1984) Mol Cell Biol 4:2062–2071

    Google Scholar 

  • Baker SM, Johnston SA, Hopper JE, Jaehning JA (1987) Mol Gen Genet 208:127–134

    Google Scholar 

  • Beggs JD (1978) Nature 275:104–108

    Google Scholar 

  • Beggs JD (1981) In: Williamson R (ed) Genetic engineering vol 2. Academic Press, New York, pp 175–203

    Google Scholar 

  • Carlson M (1987) J Bacteriol 169:4873–4877

    Google Scholar 

  • Carlson M, Botstein D (1982) Cell 28:145–154

    Google Scholar 

  • Carlson M, Osmond BC, Botstein D (1981) Genetics 98:41–54

    Google Scholar 

  • Carlson M, Taussig R, Kustu S, Botstein D (1983) Mol Cell Biol 3:439–447

    Google Scholar 

  • del Castillo L, Zimmermann FK (1987) J Gen Microbiol 133:1583–1588

    Google Scholar 

  • Entian KD (1986) Microbiol Sci 3:366–371

    Google Scholar 

  • Entian KD, Zimmermann FK, Scheel I (1977) Mol Gen Genet 156:99–105

    Google Scholar 

  • Flick JS, Johnston M (1991) Mol Cell Biol 11:5101–5112

    Google Scholar 

  • Futcher AB, Cox BS (1984) J Bacteriol 157:283–290

    Google Scholar 

  • Goldstein A, Lampen JO (1975) Methods Enzymol 42:504–511

    Google Scholar 

  • Gozalbo D, Hohmann S (1989) Mutat Res 215:89–94

    Google Scholar 

  • Grossmann MK, Zimmermann FK (1979) Mol Gen Genet 175:223–229

    Google Scholar 

  • Hohmann S (1987) Ph D thesis, Technische Hochschule Darmstadt, Germany

  • Hohmann S, Gozalbo D (1988) Mol Gen Genet 211:446–454

    Google Scholar 

  • Hohmann S, gozalbo D (1989) Mutat Res 215:79–87

    Google Scholar 

  • Hohmann S, Zimmermann FK (1986) Curr Genet 11:217–225

    Google Scholar 

  • Latchman DS (1990) Biochem J 270:281–289

    Google Scholar 

  • Mercado JJ, Vincent O, Gancedo JM (1991) FEBS Lett 291:97–100

    Google Scholar 

  • Nehlin JO, Ronne H (1990) EMBO J 9:2891–2898

    Google Scholar 

  • Nehlin JO, Carlberg M, Ronne H (1991) EMBO J 10:3373–3377

    Google Scholar 

  • Parets-Soler A (1989) Curr Genet 15:299–301

    Google Scholar 

  • Perez-Ortin JE, Estruch F, Matallana E, Franco L (1987) Nucleic Acids Res 15:6937–6956

    Google Scholar 

  • Perlman D, Halvorson HO, Cannon LE (1982) Proc Natl Acad Sci USA 70:781–785

    Google Scholar 

  • Rodriguez L, Lampen JO, MacKay VL (1981) Mol Cell Biol 1:469–474

    Google Scholar 

  • Sarokin L, Carlson M (1984) Mol Cell Biol 4:2750–2757

    Google Scholar 

  • Sarokin L, Carlson M (1985) Mol Cell Biol 5:2521–2526

    Google Scholar 

  • Sarokin L, Carlson M (1986) Mol Cell Biol 6:2314–2333

    Google Scholar 

  • Straka C, Hörz W (1991) EMBO J 10:361–368

    Google Scholar 

  • Taussig R, Carlson M (1983) Nucleic Acid Res 11:1943–1954

    Google Scholar 

  • Thoma F (1991) Trends Genet 7:175–177

    Google Scholar 

  • Zamenhoff S (1957) Methods Enzymol 3:696–704

    Google Scholar 

  • Zimmermann FK (1975) Mutat Res 31:71–86

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by F.K. Zimmermann

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gozalbo, D. Multiple copies of SUC4 regulatory regions may cause partial de-repression of invertase synthesis in Saccharomyces cerevisiae . Curr Genet 21, 437–442 (1992). https://doi.org/10.1007/BF00351652

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00351652

Key words

Navigation