Skip to main content
Log in

Krill evolution and the Antarctic ocean currents: evidence of vicariant speciation as inferred by molecular data

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The phylogenetic relationships of the Antarctic krill Euphausia superba, the key species in the Antarctic food web, and other Antarctic and sub-Antarctic cuphausiids have been investigated using the 16S ribosomal mitochondrial gene. The phylogenetic reconstructions indicated that the Antarctic species form a monophyletic clade separated by the non-Antarctic species. The results revealed a large genetic divergence between the Antarctic (E. superba and E. crystallorophias) and sub-Antarctic species (E. vallentini). The time of separation between these species, estimated from the molecular data, is around 20 million years ago, which is comparable with the geological time of the formation of a circum-Antarctic water circulation and the Antarctic Polar Frontal Zone. The euphausiid molecular phylogeny therefore represents evidence for vicariant speciation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Amos AF (1984) Distribution of krill (Euphausia superba) and the hydrography of the Southern Ocean: large scale processes. J Crustacean Biol 4: 306–329

    Google Scholar 

  • Avise JC (1994) Molecular markers, natural history and evolution. Chapman and Hall, London

    Google Scholar 

  • Cunningham CW, Blackstone NW, Buss LW (1992) Evolution of king crabs from hermit crab ancestor. Nature, Lond 355: 539–542

    Google Scholar 

  • Deacon G (1984) The Antarctic Circumpolar Ocean. Cambridge University Press, Cambridge

    Google Scholar 

  • Eastman JT (1993) Antarctic fish biology. Evolution in a unique environment. Academic Press, San Diego

    Google Scholar 

  • El-Sayed SZ (1994) Southern Ocean ecology: the BIOMASS perspective. Cambridge University Press, Cambridge

    Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791

    Google Scholar 

  • Fevolden SE (1984) Biotic and physical environmental impact on genetic variation of krill. J Crustacean Biol 4: 206–223

    Google Scholar 

  • Fevolden SE (1988) Biochemical genetics and population structure of Euphausia superba. Comp Biochem Physiol 90B: 507–513

    Google Scholar 

  • Fevolden SE, Schneppenheim R (1989) Genetic homogeneity of krill (Euphausia superba Dana) in the Southern Ocean. Polar Biol 9: 533–539

    Google Scholar 

  • Fischer W, Hureau JC (1985) FAO species identification sheets for fishery purposes. Southern Ocean (Fishing Areas 48, 58 and 88) (CCAMLR convention area). Vol. 1 and 2. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Gordon AL, Goldberg RD (1970) Circumpolar characteristics of Antarctic waters. In: Bushnel VC (ed) Antarctic map folio series, Folio 13. American Geographical Society, New York

    Google Scholar 

  • Gyllensten UB, Erlich HA (1988) Generation of single stranded DNA by polymerase chain reaction and its application to direct sequencing of the HLA-DQa locus. Proc natn Acad Sci USA 85: 7652–7656

    Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J molec Evolut 16: 111–120

    Google Scholar 

  • Kumar S, Tamura K, Nei M (1993) Molecular Evolutionary Gentics Analysis (MEGA). The Pennsylvania State University, University Park, Pa

    Google Scholar 

  • Lynch JD (1989) The gauge of speciation: on the frequencies of modes of speciation. In: Otte D, Endler JA (eds) Speciation and its consequences. Sinauer Associates, Sunderland, Mass

    Google Scholar 

  • Mackintosh NA (1972) Life cycles of Antarctic krill in relation to water and water conditions. “Discovery” Rep 36: 1–94

    Google Scholar 

  • Mackintosh NA (1973) Distribution of postlarval krill in the Antarctic. “Discovery” Rep 36: 95–126

    Google Scholar 

  • Marr JWS (1962) The natural history and geography of the Antarctic krill (Euphausia superba Dana). “Discovery” Rep 32: 33–464

    Google Scholar 

  • Medlin LK, Lange M, Baumann MEM (1994) Genetic differentiation among three colony-forming species of Phaeocystis: further evidence for the phylogeny of the Prymnesiophyta. Phycologia 33: 199–212

    Google Scholar 

  • Palumbi SR, Kessing B, Croom H, Martin A, McIntosh C, McMillan WO (1991) The simple fool's guide to PCR Version 2.0. University of Hawaii, Department of Zoology, Honolulu

    Google Scholar 

  • Phan NV, Gomes V, Suzuki I, de AC Passos MJ (1989) Preliminary studies on chromosomes of Antarctic krill, Euphausia superba Dana. Polar Biol 10: 149–150

    Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molec Biol Evolut 4: 406–525

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbour Laboratory, Cold Spring Harbour, New York

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc natn Acad Sci USA 74: 5463–5467

    Google Scholar 

  • Schneppenheim R, MacDonald CM (1984) Genetic variation and population structure of krill (Euphausia superba) in the Atlantic sector of Antarctic waters and off the Antarctic Peninsula. Polar Biol 3: 19–28

    Google Scholar 

  • Smith SL, Schnack-Schiel SB (1990) Polar zooplankton. In: Smith WO J (ed) Polar oceanography, Part B: chemistry, biology and geology. Academic Press, San Diego, pp 527–598

    Google Scholar 

  • Swofford DL (1993) Phylogenetic analysis using parsimony (PAUP). Illinois Natural History Survey, Champaign, Ill

    Google Scholar 

  • Takezaki N, Rzhetsky A, Nei M (1995) Phylogenetic test of the molecular clock and linearized trees. Molec Biol Evolut 12: 832–833

    Google Scholar 

  • Thiriot-Quiévreux C, Cuzin-Roudy J (1995) Karyological study of the Mediterranean krill Meganictiphanes norvegica (Crustacea: Euphausiacea). J Crustacean Biol 15: 79–85

    Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position, specific-gap penalties and weight matrix choice. Nucleic Acid Res 72: 4673–4680

    Google Scholar 

  • Thomson MRA, Crame JA, Thomson JW (eds) (1991) Geological evolution of Antarctica. Cambridge University Press, Cambridge

    Google Scholar 

  • Tingey RJ (ed) (1991) The geology of Antarctica. Oxford University Press, Oxford

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by M. Sarà, Genova

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patarnello, T., Bargelloni, L., Varotto, V. et al. Krill evolution and the Antarctic ocean currents: evidence of vicariant speciation as inferred by molecular data. Marine Biology 126, 603–608 (1996). https://doi.org/10.1007/BF00351327

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00351327

Keywords

Navigation