Skip to main content
Log in

Post-translational modifications in insect cells

  • Published:
Cytotechnology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • AltmannF, KornfeldG, DalikT, StaudacherE & GlösslI (1993) Processing of asparagine-linked oligosaccharides in insect cells. N-Acetylglucosaminyltransferase I and II activities in cultured lepidopteran cells. Glycobiology 3, 619–625.

    Google Scholar 

  • ButtersTD, HughesRC & VischerP (1981) Steps in the biosynthesis of mosquito cell membrane glycoproteins and the effects of tunicamycin. Biochim. Biophys. Acta 640, 672–686.

    Google Scholar 

  • ButtersTD, JonesI, ClarkeVA & JacobGS (1991) The effect of glycosidase inhibition on the N-glycans of HIV gp 120 expressed in lepidopteran cells. Glycoconj. J. 8 240.

    Google Scholar 

  • DavidsonDJ & CastellinoFJ (1991a) Asparagine-linked oligosaccharide processing in lepidopteran insect cells. Temporal dependence of the nature of the oligosaccharides assembled on asparagine-289 of recombinant human plasminogen produced in baculovirus vector infected Spodoptera frugiperda (IPLB-SF-21AE) cells. Biochemistry 30, 6167–6174.

    Google Scholar 

  • DavidsonDJ & CastellinoFJ (1991b) Structures of the asparagine-289-linked oligosaccharide assembled on recombinant human plasminogen expressed in a Mammestra brassicae cell line (IZD-MBO 503). Biochemistry 30, 6689–6696.

    Google Scholar 

  • DavidsonDJ, BretthauerRK & CastellinoFJ (1991) α-Mannosidase-catalized trimming of high-mannosidase glycans in noninfected and baculovirus-infected Spodoptera frugiperda cells (IPBL-SF-21AE). A possible contributing regulatory mechanism for assembly of complextype oligosaccharides in infected cells, Biochemistry 30, 9811–9815.

    Google Scholar 

  • DavidsonDJ, FraserMJ & and CastellinoFJ (1990) Oligosaccharide processing in the expression of human plasminogen cDNA by lepidopteran insect (Spodoptera frugiperda) cells. Biochemistry 29, 5584–5590.

    Google Scholar 

  • DaviesA & MorganBP (1993) Expression of the glycosylphosphatidylinositol-linked complement-inhibiting protein CD59 antigen in insect cells using a baculovirus vector. Biochem. J. 295, 889–896.

    Google Scholar 

  • DeomCM, CatonAJ & SchulzeIT (1986) Host cell mediated selection of a mutant influenza A virus that has lost a complex oligosaccharide from the tip of the hemagglutinin. Proc. Natl. Acad. Sci. USA 83 3771–3775.

    Google Scholar 

  • ElbeinAD (1987) Inhibitors of the biosynthesis and processing of N-linked oligosaccharide chains. Annu. Rev. Biochemistry 56, 497–534.

    Google Scholar 

  • FunkeC, BeckerS, DartschH, KlenkH-D & MühlbergerE (1995) Acylation of the Marburg Virus glycoprotein. Virology 208, 289–297.

    Google Scholar 

  • HsiehP & RobbinsPW (1984) Regulation of asparagine-linked oligosaccharide processing. Oligosaccharide processing in Aedes albopictus mosquito cells. J. Biol. Chem. 259, 2375–2382.

    Google Scholar 

  • HuS-L, KosowskiSG & SchaafKF (1987) Expression of envelope glycoproteins of human immunodeficiency virus by an insect virus vector. J. Virol. 61, 3617–3620.

    Google Scholar 

  • KeilW, GeyerR, DabrowskiJ, DabrowskiU, NiemannH, StirmS & KlenkJ-D (1985) Carbohydrates of influenza virus. Structural elucidation of the individual glycans of the FPV hemagglutinin by two-dimensional 1H NMR and methylation analysis. EMBO J. 4, 2711–2720.

    Google Scholar 

  • Klenk H-D & Garten W (1995) Activation cleavage in viral spike proteins by host proteases. In: Cellular Receptors for Animal Viruses (Winner E, ed.) pp. 241–279. Cold Spring Harbor Laboratory Press.

  • KlenkHD & RottR (1988) The molecular biology of influenza virus pathogenicity. Adv. Virus Res. 34, 247–281.

    Google Scholar 

  • KornfeldR & KornfeldS (1985) Assembly of asparagine-linked oligosaccharides. Annu. Rev. Biochem. 54, 631–664.

    Google Scholar 

  • KretzschmarE, GeyerR & KlenkH-D (1994) Baculovirus infection does not alter N-glycosylation in Spodoptera frugiperda cells. Biol. Chem. Hoppe-Seyler. 375, 323–327.

    Google Scholar 

  • KurodaK, GeyerH, GeyerR, DoerflerW & KlenkH-D (1990) The oligosaccharides of influenza virus hemagglutinin expressed in insect cells by a baculovirus vector. Virology 174, 418–429.

    Google Scholar 

  • KurodaK, GrönerA, FreseK, DrenckhahnD, HauserC, RottR, DoerflerW & KlenkH-D (1989) Synthesis of biologically active influenza virus hemagglutinin in insect larvae. J. Virol. 63, 1677–1685.

    Google Scholar 

  • KurodaK, HauserC, RottR, KlenkH-D & DoerflerW (1986) Expression of the influenza virus haemagglutinin in insect cells by a baculovirus vector. EMBO J. 5, 1359–1365.

    Google Scholar 

  • KurodaK, VeitM & KlenkH-D (1991) Retarded processing of influenza virus hemagglutinin in insect cells. Virology 180, 159–165.

    Google Scholar 

  • LinderME, MiddletonP, HeplerJR, TaussigR, GilmanAG & MumbySM (1993) Lipid modifications of G proteins: alpha subunits are palmitoylated. Proc. Natl. Acad. Sci. USA 90, 3675–3679.

    Google Scholar 

  • MontreuilJ (1984) Spatial conformation of glycans and glycoproteins. Biol. Cell 51, 115–132.

    Google Scholar 

  • MunkK, PritzerE, KretzschmarE, GutteB, GartenW & KlenkH-D (1992) Carbohydrate masking of an antigenic epitope of influenza virus haemagglutinin independent of oligosaccharide size. Glycobiology 2, 233–240.

    Google Scholar 

  • NayakDP & JabbarMA (1989) Structural domains and organizational conformation involved in the sorting and transport of influenza virus transmembrane proteins. Annu. Rev. Microbiol. 43, 465–501.

    Google Scholar 

  • Oker-BlomC, PetterssonRF & SummersMD (1989) Baculovirus polyhedrin promotor directed expression of Rubella virus envelope glycoproteins, E1 and E2, in Spodoptera frugiperda cells. Virology 172, 82–91.

    Google Scholar 

  • PageMJ, HallA, RhodesS, SkinnerRH, MurphyV, SydenhamM & LowePN (1989) Expression and characterization of the Ha-ras p21 protein produced at high levels in the insect/baculovirus system. J. Biol. Chem. 264, 19147–19154.

    Google Scholar 

  • PaulsonJC (1989) Glycoproteins: what are the sugar chains for? TIBS 14, 272–276.

    Google Scholar 

  • RademacherTW, ParekhRB & DwekRA (1988) Glycobiology. Annu. Rev. Biochem. 57. 785–838.

    Google Scholar 

  • RayR, GalinskiMS & CompansRW (1989) Expression of the fusion glycoprotein of human parainfluenza type 3 virus in insect cells by a recombinant beculovirus and analysis of its immunogenic property. Virus Res. 12, 169–180.

    Google Scholar 

  • RobertsTE & FaulknerP (1989) Fatty acid acylation of the 67K envelope glycoprotein of a baculovirus: Autographa californica nuclear polyhedrosis virus. Virology 172, 377–381.

    Google Scholar 

  • RobertsonJS, NaeveCW, WebsterRG, BootmanJS, NewmanR & SchildGC (1985) Alterations in the hemagglutinin associated with adaptation of influenza B virus to growth in eggs. Virology 143, 166–174.

    Google Scholar 

  • RoebroekAJM, CreemersJWM, PauliIGL, BogaertT & Van deVenWJM (1993) Generation of structural and functional diversity in furin-like proteins in Drosophila melanogaster by alternative splicing of the DFUR1 gene. EMBO J. 12, 1853–1870.

    Google Scholar 

  • RoebroekAJM, CreemersJWM, PauliIGL, Kurzik-DumkeU, RentronM, GateffEAF, LeunissenJAM & Van deVenWJM (1992) Cloning and functional expression of Dfurin2, subtilisin-like proprotein processing enzyme of Drosophila melanogaster with multiple repeats of a cysteine motif. J. Biol. Chem. 267, 17208–17215.

    Google Scholar 

  • SchuyW, WillC, KurodaK, ScholtissekC, GartenW & KlenkH-D (1986) Mutations blocking the transport of the influenza virus hemagglutinin between the rough endoplasmic reticulum and the Golgi apparatus EMBO J. 5, 2831–2836.

    Google Scholar 

  • SkehelJJ, StevensDJ, DanielsRS, DouglasAR, KnossowDM, WilsonIA & WileyDC (1984) A carbohydrate side chain on hemagglutinins of Hongkong influenza viruses inhibits recognition by a monoclonal antibody. Proc. Natl. Acad. Sci. USA 81, 1779–1783.

    Google Scholar 

  • Stieneke-GröberA, VeyM, AnglikerH, ShawE, ThomasG, RobertsC, KlenkH-D & GartenW (1992) Influenza virus gemagglutinin with multibasic cleavage site is activated by furin, a subtilisin-like endoprotease. EMBO J. 11, 2407–2414.

    Google Scholar 

  • VialardJ, LalumièreM, VernetT, BriedisD, AlkhatibG, HenningD, LevinD & RichardsonC (1990) Synthesis of the membrane fusion and hemagglutinin proteins of measles virus, using a novel baculovirus vector containing the β-galactosidase gene. J. Virol. 64, 37–50.

    Google Scholar 

  • WathenMW, AeedPA & ElhammerAP (1991) Characterization of oligosaccharide structures on a chimeric respiratory syncytial virus protein expressed in insect cell line Sf9. Biochemistry 30, 2863–2868.

    Google Scholar 

  • WebsterRG, LaverWG & AirGM (1983) Antigene variation among type A influenza viruses. In: Genetics of Influenza Viruses Palese P & KingsburyW (Eds) pp. 127–168, Springer Verlag, Wien.

    Google Scholar 

  • WileyDC & SkehelJJ (1987) The structure and function of the hemagglutinin membrane glycoprotein of influenza virus. Ann. Rev. Biochem. 56, 365–394.

    Google Scholar 

  • WilsonJA, SkehelJJ & WileyDC (1981) Structure of the hemagglutinin membrane glycoprotein of influenza virus at 3A resolution. Nature (London) 289, 366–373.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klenk, HD. Post-translational modifications in insect cells. Cytotechnology 20, 139–144 (1996). https://doi.org/10.1007/BF00350394

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00350394

Key words

Navigation