Skip to main content
Log in

High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier

  • Original articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

A method, using LiAc to yield competent cells, is described that increased the efficiency of genetic transformation of intact cells of Saccharomyces cerevisiae to more than 1 × 105 transformants per microgram of vector DNA and to 1.5% transformants per viable cell. The use of single stranded, or heat denaturated double stranded, nucleic acids as carrier resulted in about a 100 fold higher frequency of transformation with plasmids containing the 2μm origin of replication. Single stranded DNA seems to be responsible for the effect since M13 single stranded DNA, as well as RNA, was effective. Boiled carrier DNA did not yield any increased transformation efficiency using spheroplast formation to induce DNA uptake, indicating a difference in the mechanism of transformation with the two methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aviv H, Leder P (1972) Proc Natl Acad Sci USA 69:1408–1412

    Google Scholar 

  • Bloch D (1976) In: King RC (eds) Handbook of genetics, vol 5. Plenum Press, New York, pp 139–167

    Google Scholar 

  • Burke DT, Carle GF, Olson MV (1987) Science 236:806–812

    Google Scholar 

  • Beggs JD (1978) Nature 275:104–109

    Google Scholar 

  • Botstein D, Falco SC, Stewart SE, Brennan M, Scherer S, Stinchcomb DT, Struhl K, Davis RW (1979) Gene 8:17–24

    Google Scholar 

  • Broach JR, Strathern JN, Hicks JB (1979) Gene 8:121–133

    Google Scholar 

  • Bruschi CV, Comer AR, Howe GA (1987) Yest 3:131–137

    Google Scholar 

  • Bruschi CV, Howe GA (1985) J Cell Biochem 1519:150

    Google Scholar 

  • Brzobohaty B, Kovac L (1986) J Gen Microbiol 132:3089–3093

    Google Scholar 

  • Constanzo MC, Fox TD (1988) Genetics 120:667–670

    Google Scholar 

  • Devenish RJ, Newlon CS (1982) Gene 18:277–288

    Google Scholar 

  • Fasullo MT, Davis RW (1987) Proc Natl Acad Sci USA 84:6215–6219

    Google Scholar 

  • Gietz RD, Prakash S (1988) Gene 74:535–541

    Google Scholar 

  • Gietz RD, Sugino A (1988) Gene 74:527–534

    Google Scholar 

  • Gyuris J, Duda EG (1986) Mol Cell Biol 6:3295–3297

    Google Scholar 

  • Hanahan D (1983) J Mol Biol 166:557–580

    Google Scholar 

  • Harashima S, Takagi A, Oshima Y (1984) Mol Cell Biol 4:771–778

    Google Scholar 

  • Hinnen A, Hicks JB, Fink GR (1978) Proc Natl Acad Sci USA 75:1929–1933

    Google Scholar 

  • Hoffman CS, Winston F (1987) Gene 57:267–272

    Google Scholar 

  • Holm C, Meeks-Wagner DG, Fangman WL, Botstein D (1986) Gene 42:169–173

    Google Scholar 

  • Ito H, Fukuda Y, Murata K, Kimura A (1983) J Bacteriol 153:163–168

    Google Scholar 

  • Jensen R, Sprague GF, Herskowitz I (1983) Proc Natl Acad Sci USA 80:3035–3039

    Google Scholar 

  • Johnston J, Hilger F, Mortimer R (1981) Gene 16:325–329

    Google Scholar 

  • Keszenman-Pereya D, Hieda K (1988) Curr Genet 13:21–23

    Google Scholar 

  • Klebe RJ, Harriss JV, Sharp D, Douglas MG (1983) Gene 25:333–341

    Google Scholar 

  • Kunkel TA, Roberts JD, Zakour RA (1987) Methods Enzymol 154:367–382

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning, a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Orr-Weaver TL, Szostak JW, Rothstein RJ (1983) Methods Enzymol 101:228–244

    Google Scholar 

  • Rose M, Winston F (1984) Mol Gen Genet 193:557–560

    Google Scholar 

  • Rothstein RJ (1983) Methods Enzymol 101:202–211

    Google Scholar 

  • Schiestl RH, Igarashi S, Hastings PJ (1988) Genetics 119:237–247

    Google Scholar 

  • Schiestl RH, Prakash S (1988) Mol Cell Biol 8:3619–3626

    Google Scholar 

  • Schiestl RH, Reynolds P, Prakash S, Prakash L (1989) Mol Cell Biol 9:1882–1896

    Google Scholar 

  • Schiestl RH, Wintersberger U (1982) Mol Gen Genet 186:512–517

    Google Scholar 

  • Struhl K (1983) Nature 305:391–397

    Google Scholar 

  • Struhl K, Stinchcomb DT, Scherer S, Davis RW (1979) Proc Natl Acad Sci USA 76:1035–1039

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schiestl, R.H., Gietz, R.D. High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr Genet 16, 339–346 (1989). https://doi.org/10.1007/BF00340712

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00340712

Key words

Navigation