, Volume 96, Issue 2, pp 179-185

Water relations of native and introduced C4 grasses in a neotropical savanna

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Introduced African grasses are invading Neotropical savannas and displacing the native herbaceous community. This work, which is part of a program to understand the success of the African grasses, specifically investigates whether introduced and native grasses differ in their water relations. The water relations of the native Trachypogon plumosus and the successful invader Hyparrhenia rufa were studied in the field during two consecutive years in the seasonal savannas of Venezuela. The two C4 grasses differed clearly in their responses to water stress. H. rufa consistently had higher stomatal conductance, transpiration rate, leaf water and osmotic potential and osmotic adjustment than the native T. plumosus. Also, leaf senescence occurred much earlier during the dry season in H. rufa. Both grasses showed a combination of water stress evasion and tolerance mechanisms such as stomatal sensitivity to atmospheric or soil water stress, decreased transpiring area and osmotic adjustment. Evasion mechanisms are more conspicuous in H. rufa whereas T. plumosus is more drought tolerant and uses water more “conservatively”. The evasion mechanisms and oportunistic use of water by H. rufa, characteristic of invading species, contribute to, but only partially explain, the success of this grass in the Neotropical savannas where it displaces native plants from sites with better water and nutrient status. Conversely, the higher water stress tolerance of t. plumosus is consistent with its capacity to resist invasion by alien grasses on shallow soils and sites with poorer nutrient and water status.