Skip to main content
Log in

The growth and signalling defects of the ggs1 (fdp1/byp1) deletion mutant on glucose are suppressed by a deletion of the gene encoding hexokinase PII

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Yeast cells defective in the GGS1 (FDP1/BYP1) gene are unable to adapt to fermentative metabolism. When glucose is added to derepressed ggs1 cells, growth is arrested due to an overloading of glycolysis with sugar phosphates which eventually leads to a depletion of phosphate in the cytosol. Ggs1 mutants lack all glucose-induced regulatory effects investigated so far. We reduced hexokinase activity in ggs1 strains by deleting the gene HXK2 encoding hexokinase PII. The double mutant ggs1Δ, hxk2Δ grew on glucose. This is in agreement with the idea that an inability of the ggs1 mutants to regulate the initiation of glycolysis causes the growth deficiency. However, the ggs1Δ, hxk2Δ double mutant still displayed a high level of glucose-6-phosphate as well as the rapid appearance of free intracellular glucose. This is consistent with our previous model suggesting an involvement of GGS1 in transport-associated sugar phosphorylation. Glucose induction of pyruvate decarboxylase, glucoseinduced cAMP-signalling, glucose-induced inactivation of fructose-1,6-bisphosphatase, and glucose-induced activation of the potassium transport system, all deficient in ggs1 mutants, were restored by the delection of HXK2. However, both the ggs1Δ and the ggs1Δ, hk2Δ mutant lack detectable trehalose and trehalose-6-phosphate synthase activity. Trehalose is undetectable even in ggs1Δ strains with strongly reduced activity of protein kinase A which normally causes a very high trehalose content. These data fit with the recent cloning of GGS1 as a subunit of the trehalose-6-phosphate synthase/phosphatase complex. We discuss a possible requirement of trehalose synthesis for a metabolic balance of sugar phosphates and free inorganic phosphate during the transition from derepressed to fermentative metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bergmeyer HU (1974) Methods of enzymatic analysis, 2nd edn. Academic Press, New York

    Google Scholar 

  • Breitenbach-Schmitt I, Schmitt HD, Heinisch J, Zimmermann FK (1984) Mol Gen Genet 195:536–540

    Google Scholar 

  • Cannon JF, Morcos PA, Clemens KE, Khali M (1992) Yeast 8 (special issue): S359

  • Chapman C, Bartley W (1968) Biochem J 107:455–465

    Google Scholar 

  • Chester V (1968) J Gen Microbiol 51:49–56

    Google Scholar 

  • Duntze W, Neumann D, Holzer H (1968) Eur J Biochem 3:326–331

    Google Scholar 

  • Eilam Y, Othman M, Halachmi D (1990) J Gen Microbiol 136:2537–2543

    Google Scholar 

  • Entian KD (1986) Microbiol Sci 3:366–371

    Google Scholar 

  • Farkas I, Hardy TA, Goebl MG, Roach PJ (1991) J Biol Chem 266:15602–15607

    Google Scholar 

  • Francois J, Van Schaftingen E, Hers HG (1984) Eur J Biochem 145:187–193

    Google Scholar 

  • Francois J, Van Schaftingen E, Hers HG (1988) Eur J Biochem 171:599–608

    Google Scholar 

  • Francois J, Neves MJ, Hers HG (1991) Yeast 7:575–587

    Google Scholar 

  • Fraenkel DG (1985) Proc Natl Acad Sci USA 87:4740–4744

    Google Scholar 

  • Frascotti G, Baroni D, Martegani E (1990) FEBS Lett 274:19–22

    Google Scholar 

  • Gancedo C (1971) J Bacteriol 107:401–405

    Google Scholar 

  • Gancedo C, Schwerzmann K (1976) Arch Microbiol 109:221–225

    Google Scholar 

  • Gancedo C, Serrano R (1989) In: Rose AH, Harrison JS (eds), The Yeasts vol 3, 2nd edn. Academic Press, New York, pp 205–259

    Google Scholar 

  • Gancedo JM (1992) Eur J Biochem 206:297–313

    Google Scholar 

  • Gancedo JM, Gancedo C (1971) Arch Microbiol 76:132–138

    Google Scholar 

  • Gonzáles MI, Stucka R, Blázquez MA, Feldmann H, Gancedo C (1992) Yeast 8:183–192

    Google Scholar 

  • Görts CPM (1969) Biochim Biophys Acta 184:299–305

    Google Scholar 

  • Hohmann S, Huse K, Valentin E, Mbonyi K, Thevelein JM, Zimmermann FK (1992) J Bacteriol 174:4183–4188

    Google Scholar 

  • Hottiger T, Schmutz P, Wiemken A (1987a) J Bacteriol 169:5518–5522

    Google Scholar 

  • Hittiger T, Boller T, Wiemken A (1987b) FEBS Lett 220:113–115

    Google Scholar 

  • Hottiger T, Boller T, Wiemken A (1989) FEBS Lett 255:431–434

    Google Scholar 

  • Kaibuchi K, Miyajima A, Arai K, Matsumoto K (1986) Proc Natl Acad Sci USA 83:8172–8176

    Google Scholar 

  • Koning W de, Van Dam K (1992) Anal Biochem 204:118–123

    Google Scholar 

  • Lillie SH, Pringle JR (1980) J Bacteriol 143:1384–1394

    Google Scholar 

  • Lobo Z, Maitra PK (1977) Genetics 86:727–744

    Google Scholar 

  • Londesborough J, Vuorio O (1991) J Gen Microbiol 137:323–330

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) J Biol Chem 193:265–275

    Google Scholar 

  • Ma H, Botstein D (1986) Mol Cell Biol 6:4046–4052

    Google Scholar 

  • Maitra PK, Lobo Z (1971) J Biol Chem 246:475–488

    Google Scholar 

  • Maitra PK, Lobo Z (1983) Genetics 105:501–515

    Google Scholar 

  • Marshall-Carlson L, Neigeborn L, Coons D, Bisson L, Carlson M (1991) Genetics 128:505–512

    Google Scholar 

  • Matern H, Holzer H (1977) J Biol Chem 252:6399–6402

    Google Scholar 

  • Moore PA, Sagliocco FA, Wood RMC, Brown AJP (1991) Mol Cell Biol 11:5330–5337

    Google Scholar 

  • Navon G, Shulman RG, Yamano T, Eccleshall TR, Lam KB, Baranofski JJ, Marmur J (1979) Biochemistry 18:4487–4499

    Google Scholar 

  • Neves MJ, Jorge JA, Francois JM, Terenzi HF (1991) FEBS Lett 283:19–22

    Google Scholar 

  • Nikawa J, Cameron S, Toda T, Ferguson KW, Wigler M (1987) Genes Dev 1:931–937

    Google Scholar 

  • Panek AC, de Araujo PS, Neto VM, Panek AD (1987) Curr Genet 11:459–465

    Google Scholar 

  • Panek AC, Francois J, Panek AD (1988) Curr Genet 13:15–20

    Google Scholar 

  • Ramos J, Szkutnicka K, Cirillo VP (1988) J Bacteriol 170:5375–5377

    Google Scholar 

  • Ramos J, Haro R, Alijo R, Rodriguez-Navarro A (1992) J Bacteriol 174:2025–2027

    Google Scholar 

  • Rose M, Albig W, Entian K-D (1991) Eur J Biochem 199:511–518

    Google Scholar 

  • Schaaff I, Green JBA, Gozalbo D, Hohmann S (1989) Curr Genet 15:75–81

    Google Scholar 

  • Schmitt HD, Zimmermann FK (1982) J Bacteriol 151:1146–1152

    Google Scholar 

  • Schmitt HD, Ciriacy M, Zimmermann FK (1983) Mol Gen Genet 192:247–252

    Google Scholar 

  • Serrano R (1983) FEBS Lett 156:11–14

    Google Scholar 

  • Sherman F, Fink GR, Hicks JB (1986) Methods in yeast genetics, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Tatchell K, Robinson L, Breitenbach M (1985) Proc Natl Acad Sci USA 82:3785–3789

    Google Scholar 

  • Thevelein JM (1984) Microbiol Rev 48:42–59

    Google Scholar 

  • Thevelein JM (1991) Mol Microbiol 5:1301–1307

    Google Scholar 

  • Thevelein JM (1992) Ant van Leeuwenhoek 62:109–130

    Google Scholar 

  • Thevelein JM, Beullens M, Honshoven F, Hoebeeck G, Detremerie K, den Hollander JA, Jans AWH (1987) J Gen Microbiol 133:2191–2196

    Google Scholar 

  • Thomas BJ, Rothstein R (1989) Cell 56:619–630

    Google Scholar 

  • Toda T, Uno I, Ishikawa T, Powers S, Kataoka T, Broek D, Cameron S, Broach J, Matsumoto K, Wigler M (1985) Cell 40:27–36

    Google Scholar 

  • Van Aelst L, Hohmann S, Zimmermann FK, Jans AWH, Thevelein JM (1991) EMBO J 10:2095–2104

    Google Scholar 

  • Van de Poll KW, Schamhart DHJ (1977) Mol Gen Genet 154:61–66

    Google Scholar 

  • Van de Poll KW, Kerkenaar A, Schamhart DHJ (1974) J Bacteriol 117:965–970

    Google Scholar 

  • Vandercammen A, Francois J, Hers H-G (1989) Eur J Biochem 182:613–620

    Google Scholar 

  • Vuorio O, Londesborough J, Kalkkinen N (1992) Yeast 8 (special issue): S626

  • Zamenhoff S (1957) Methods Enzymol 3:696–704

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by K. Wolf

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hohmann, S., Neves, M.J., de Koning, W. et al. The growth and signalling defects of the ggs1 (fdp1/byp1) deletion mutant on glucose are suppressed by a deletion of the gene encoding hexokinase PII. Curr Genet 23, 281–289 (1993). https://doi.org/10.1007/BF00310888

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00310888

Key words

Navigation