Behavioral Ecology and Sociobiology

, Volume 24, Issue 1, pp 47-58

First online:

Threat-sensitive predator avoidance in damselfish-trumpetfish interactions

  • G. S. HelfmanAffiliated withDepartment of Zoology, University of GeorgiaInstitute of Ecology, University of Georgia

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


Predatory threat can vary during a predator-prey interaction as an attack escalates or among predators at different times. A Threat-sensitivity hypothesis is presented which predicts that prey individuals will trade-off predator avoidance against other activities by altering their avoidance responses in a manner that reflects the magnitude of the predatory threat. This hypothesis was tested in the field by presenting prey (threespot damselfish, Stegastes planifrons) with models of foraging predators (Atlantic trumpetfish, Aulostomus maculatus). During a presentation, damselfish displayed progressively stronger avoidance as predator models were brought nearer; response waned rapidly once predator models passed overhead. Larger predator models and those oriented in a strike pose evoked stronger avoidance reactions than smaller and non-attacking models, intermediate responses were evoked by size and orientation combinations that were intermediate in threat, and habituation was more common to weakly-threatening presentations. Smaller damselfish showed stronger avoidance of models than did larger damselfish. Nonavoidance activities, such as feeding and territorial defense, were curtailed during presentations or were more common during weakly threatening presentations. Approaches to the models, equated with mobbing, were more common among large damselfish, again reflecting degrees of vulnerability among different size prey individuals. These initial results indicate that damselfish threatened by predators respond in a graded manner that reflects the degree of threat posed by the predator, in accordance with the Threat-sensitivity hypothesis.