Skip to main content
Log in

The dynamics of recurrent inhibition

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

A heuristic model for the dynamics of recurrent inhibition, emphasizing non-linearities arising from the stoichiometry of transmitter-receptor interactions and time delays due to finite feedback pathway transmission times, is developed and analyzed. It is demonstrated that variation in model parameters may lead to the existence of multiple steady states, and the local stability of these are analyzed as well as the occurrence of switching behaviour between them. As an example of the applicability of this model, parameters are estimated for the hippocampal mossy fibre-CA3 pyramidal cell-basket cell complex. Numerically simulated responses of this system to alterations in presynaptic drive and titration of inhibitory transmitter receptors by penicillin are presented. Numerical simulations indicate the existence of multiple bifurcations between periodic solutions, as well as the existence of bifurcations to chaotic solutions, as presynaptic drive and receptor density are varied. It is hypothesized that the model offers insight into the sequences of events recorded in single CA3 pyramidal cells following the application of penicillin, a specific inhibitory receptor blocking agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. an der Heiden, U.: Delays in physiological systems. J. Math. Biol. 8, 345–364 (1979).

    Google Scholar 

  2. an der Heiden, U.: Analysis of neutral networks. Lecture Notes in Biomathematics, Vol. 35. Berlin-Heidelberg-New York: Springer, 1980

    Google Scholar 

  3. an der Heiden, U., Mackey, M. C.: The dynamics of production and destruction: Analytic insight into complex behaviour. J. Math. Biol. 16, 75–101 (1982)

    Google Scholar 

  4. an der Heiden, U., Walther, H. O.: Existence of chaos in control systems with delayed feedback. J. Diff. Eqns. 47, 273–295 (1983)

    Google Scholar 

  5. an der Heiden, U., Mackey, M. C., Walther, H. O.: Complex oscillations in a simple deterministic neuronal network. Lectures in Applied Mathematics, Hoppensteadt, F. (ed.), pp. 355–360. American Mathematical Society, Providence, 1981

    Google Scholar 

  6. Anderson, P., Eccles, J. C., Loyning, Y.: Location of postsynaptic inhibitory synapses on hippocampal pyramids. J. Neurophysiol. 27, 592–607 (1964)

    Google Scholar 

  7. Anderson, P.: Organization of hippocampal neurons and their interconnections. In: The Hippocampus, Isaacson, R. L., Pribram, K. H. (eds.), Vol. 1. New York: Plenum Press, 1975

    Google Scholar 

  8. Bellman, R., Cooke, R. L.: Differential-Difference Equations. New York-San Francisco-London: Academic Press 1963

    Google Scholar 

  9. Coleman, B. D., Renninger, G. H.: On the integral equations of the linear theory of recurrent lateral interactions in vision. Math. Biosci. 20, 155–170 (1974)

    Google Scholar 

  10. Coleman, B. D., Renninger, G. H.: Theory of the response of the Limulus retina to periodic excitation. J. Math. Biol. 3, 103–119 (1976)

    Google Scholar 

  11. Dichter, M., Spencer, W. A.: Penicillin-induced interictal discharges from the cat hippocampus. II. Mechanisms underlying origin and restriction. J. Neurophysiol 32, 663–687 (1969)

    Google Scholar 

  12. Glass, L., Mackey, M. C.: Pathological conditions resulting from instabilities in physiological control systems. Ann. N.Y. Acad. Sci. 316, 214–235 (1979).

    Google Scholar 

  13. Hadeler, K. P.: On the theory of lateral inhibition. Kybernetik 14, 161–165 (1974)

    Google Scholar 

  14. Hayes, N. D.: Roots of the transcedental equation associated with a certain difference-differential equation. J. Lond. Math. Soc. 25, 226–232 (1950)

    Google Scholar 

  15. Horowitz, J. M., Freeman, W. J., Stoll, P. J.: A neural network with a background level of excitation in the cat hippocampus. Intern. J. Neuroscience 5, 113–123 (1973)

    Google Scholar 

  16. Kandel, E. R., Spencer, W. A.: Electrophysiology of hippocampal neurons. II. After-potentials and repetitive firing. J. Neurophysiol. 24, 243–259 (1961)

    Google Scholar 

  17. Lopes da Silva, F. H., Arnolds, D. E. A. T.: Physiology of the hippocampus and related structures. Ann. Rev. Physiol. 40, 185–216 (1978)

    Google Scholar 

  18. Mackey, M. C., Glass, L.: Oscillation and chaos in physiological control systems. Science 197, 287–289 (1977)

    Google Scholar 

  19. Mates, J. W. B., Horowitz, J. M.: Instability in a hippocampal neural network. Comp. Prog. Biomed. 6, 74–84 (1976)

    Google Scholar 

  20. Nowak, L. M., Young, A. B., Macdonald, R. L.: GABA and bicuculline actions on mouse spinal cord and cortical neurons in cell culture. Brain Research 244, 155–164 (1982)

    Google Scholar 

  21. Peters, H.: Globales Lösungsverhalten zeitverzögerter Differentialgleichungen am Beispiel von Modellfunktionen. Dissertation, University of Bremen, F.R.G., 1980

    Google Scholar 

  22. Prince, D. A.: Microelectrode studies of penicillin foci. In: Basic Mechanisms of the Epilepsies, Jasper, H. H., Ward, A. A., Pope, A. (eds.), pp. 320–328. Boston: Little, Brown and Company, 1969

    Google Scholar 

  23. Ratliff, F.: (ed.): Studies on Excitation and Inhibition in the Retina. London: Chapman and Hall 1974

    Google Scholar 

  24. Saupe, D.: Beschleunigte PL-Kontinuitätsmethoden und periodische Lösungen parametrisierter Differentialgleichungen mit Zeitverzögerung. Dissertation, University of Bremen, F.R.G., 1982

    Google Scholar 

  25. Spencer, W. A., Kandel, E. R.: Electrophysiology of hippocampal neurons. III. Firing level and time constant. J. Neurophysiol. 24, 260–271 (1961)

    Google Scholar 

  26. Walther, H. O.: Homoclinic solution and chaos in x(t) =f(x(t- 1)). Nonlinear Anal. 5, 775–788 (1981)

    Google Scholar 

  27. Wazewska-Czysewska, M., Lasota, A.: Roczniki Polskiego Towarzystwa Mathematycznego, Seria III: Matematyka Stosowana VI, 23–39 (1976)

    Google Scholar 

  28. Werman, R.: Stoichiometry of GABA-receptor interactions: GABA modulates the glycine-receptor interaction allosterically in a vertebrate neuron. In: Advances in Experimental Medicine and Biology, vol. 123, pp. 287–301, Mandel, P., De Feudis, F. V. (eds.). New York: Plenum Press, 1979

    Google Scholar 

  29. Wilson, H. R., Cowan, J. D.: Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J. 12, 1–24 (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mackey, M.C., an der Heiden, U. The dynamics of recurrent inhibition. J. Math. Biology 19, 211–225 (1984). https://doi.org/10.1007/BF00277747

Download citation

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00277747

Key words

Navigation